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1. ' INTRODUCTION 

For the foreseeable future, the wind tunnel will continue to be a vital tool in the 
development of atmospheric vehicles. In the application of data from such facilities to 
obtain aircraft performance predictions, wall effects must be accounted for. Procedures 
to treat subsonic wall interference have received considerable attention. A view of exist- 
ing technology for this speed regime can be obtained from Rofs. 1-3. By contrast, the 
methodology for the transonic case is much less developed since it gives rise to a par- 
ticularly difficult environment. Some problem areas that contribute to the inaccuracy of 
transonic wall interference assessment ],.ave been summarized by Kemp in Ref. 4. These 
are: 

1. Nonlinearity of the governing equation at supercritical flow conditions. 

2. Nonlinearity of ventilated wall cross flow boundary conditions and difficulties in pre- 
dicting or measuring them. 

3. Wind tunnel geometry features, such as finite ventilated wall length, difl~user entry, 
and presence of a wake survey rake and its support. 

4. Boundary layer on tunnel side walls, which causes the flow to deviate from two- 
dimensional test conditions when they are desired. 

In addition to these, other viscous effects such as shock-boundary layer interactions are 
relevant to interference assessment considerations. Regarding Items 1-4, sidewall boundary 
layers have received attention by Barnwell in Ref. 5. Croesflow boundary conditions and 
wall boundary condition simulations have been treated in Refs. 6 and 7. 

To deal with the nonlinear effects, computational procedures have to be utilized to 
treat the interaction of the test article with the walls. Some of these are applied to ~das- 
sical" boundary conditions simulating the latter. As a concurrent approach, techniques 
incoIl~orating measurements on control surfaces of flow quantities such as the pressure and 
velocity components are gaining acceptance. Rofs. 8-14 illustrate dit~erent concepts using 
this approach for subsonic and transonic ranges. Discussions of related issues are contained 
in Refs. 15 and 16. 

In addition to the utility of purely numerical large-scale computationaUy intensive 
methods for transonic wall correction prediction, there is a need for approaches that can 
reduce the number of input parameters necessary to compute the correction, shed light 
on the physics of the wall interference phenomena, simplify the necessary computations, 
and be generalized in three dimensions, as well as unsteady flows. Asymptotic procedures 
such as those described in Rds. 17-20 provide such advantages. Furthermore, they can 
stimulate valuable interactions with the other methods previously mentioned to suggest 
possible improvements, as well as deriving beneficial features from them. 

The cruciai importance of understanding transonic wall interference and developing 
simplified computationaUy non-intensive models has also occurred in developing drag esti- 
mates based on a computational nonlinear area rule algorithm developed at the Rockwell 
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Science Center. Figure I from Ref. 21 shows the sizeable impact of wall interference char- 
acterization in accurately predicting the drag rise of wing-body combinations. In the 
figure, various classical models for the wall interaction are compared to approximation of 
the slotted wall condition corresponding to a slot parameter of approximately 1" It is seen 
that a dramatic improvement in the agreement of theory and experiment can be obtained 
with the proper wall simulation. 

Because of the importance of obtaining simplified procedures for transonic wall inter- 
ference predictions for three-dimensional models and adaptive wall applications such as 
those described in Refs. 22-28, the Rockwell International Science Center team conducted 
an effort for Arnold Engineering Development Center (AEDC) under Air Force Contract 
No. F40600--82-C0005 to develop three-dimensionai extensions of its two-dimensional 
asymptotic theory of transonic wall interference, described in Ref. 20. Out of this pro- 
gram, Rockwell developed theories for low and high aspect ratio configurations. From the 
effort summarized in Ref. 29, which was restricted to an analytical investigation, a formu- 
lation for the numerical treatment of the low aspect ratio case was obtained. A partial 
development of the high aspect ratio theory was also obtained and is described in Ref. 29. 

On the basis of this study, a follow-on program has been conducted under the con- 
tract, "Asymptotic Theory of Transonic Wind Tunnel W'all Interference". This effort was 
sponsored by AEDC under Contract F40600-84-C0010. One objective of the program was 
to fully develop the high aspect ratio theoretical wall interference model for solid wall and 
pressure specified boundary conditions (Task 2.0). Another was to numerically implement 
both the slender and high aspect ratio theories in the form of computer codes, (Tasks 1.0 
and 3.0, respectively). 

Based on discussions with AEDC and Calspan personnel during the program, the con- 
tract was modified to perform additional studies regarding the application of the asymp- 
totic methods to Wind Tunnel Interference/Assessment Correction (WIAC) procedures in 
which computational and analytical techniques for interference prediction are augmented 
with the use of appropriate experimental measurements (Task 4.0). The original thrust 
of this effort was to combine the asymptotic theory with momentum theorems to obtain 
more information on the nature of the interference. However, on the basis of the results 
obtained in the theoretical and computational phases of the work, it became evident that 
the information f~om the momentum theorems were naturally present in the asymptotic 
developments and that the emphasis should be on exploiting the latter to develop new and 
improved WIAC techniques. This motivated the formulation of two Asymptotic Integrated 
v~ith Measurement (AIM) techniques in the contract. They are in line with the high aspect 
ratio and slender configuration models developed. For the slender case typifying compact 
fighter and missile test articles, additional theoretical analyses beyond the original State- 
ment of Work were performed to devise asymptotic models of the wall interference when 
pressure boundary conditions are prescribed on a wall or interface. This led to a new triple 
deck model of the interference flow field. 

This report summarizes the work conducted under Tasks 1.0-4.0. Section 2 describes 
the theoretical and computational studies conducted under Task 1.0 as well as the supple- 
mentary activiW related to the pressure interface condition for slender bodies. In Section 3, 
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the investigations conducted under Tasks 2.0 and 3.0 are discussed. The AIM concepts are 
detailed in Section 4. Numerical procedures as wen as structure of the codes ere outlined 
in Sections 2 and 3. This information will complement User's Guides for both confiued 
slender and high aspect ratio configuration codes which wiU be released in the near future. 
Results for both slender and high aspect ratio limiting cases are presented. In Sections 5 
and 6, conclusions and recommendations for future work are provided. 
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2. C O N F I N E D  S L E N D E R  C O N F I G U R A T I O N S  

In what follows, the flow over a slender airplane model in a circular wind tunnel test 
section will be considered. The main contractual activity in this phase was to computa- 
tionally solve the wall interference problem (P1) derived in Ref. 29. A schematic of the 
arrangement is shown in Fig. 2. The interference problem derived in Ref. 29 is associated 
with free jet and solid wall boundary conditions imposed on an interface control surface 
(shown in phantom in Fig. 2). l~or this purpose, a secondary limit of a large test section 
radius within the primary Karman Guderley transonic small disturbance limit was used. 
Only subsonic freestreams are conmdered in the analysis. In ltef. 29, the ~ow was shown 
to have a "triple deck" structure. These decks or zones are shown schematically in Fig. 2. 

Near the axis of symmetry of an equivalent body of revolution haviflg the same stream- 
wise distribution of cross-sectional area as the complete airplane (axis layer), lateral gra- 
dients dominate. In ltof. 29, the equivalent body was shown to simulate the interference 
of the complete airplane (Area Rule for Interference). Within a "central layer", if a, the 
angle of attack, and the characteristic thickness, 6, are such that ~/6 - O(1), as 6 -+ 0, the 
flow is nearly axisymmetric and can be characterized as a nonlinear line source. Asymp- 
totic representations for the central and axis layers were derived in which the first order 
terms are those associated with the unconfined glow. The second order corrections of these 
regions are due to the wall el[acts. A third region denoted as the wall layer was identified, 
where the asstunption of small wall perturbations is invalid. Here, other simplifications 
apply which represent the slender airplane as a mnltipole reflected in the walls. 

It was ~hown that ~e effect of the toalb on the flow field ~ deduced by 5ol~ing the 
second order problem for the central layer. This ~nsists of the equation of motion, here- 
inafter ~ferred to o~ the "variational equation ~, subject to boundary condition8 deviJed 
from matching the ~vall and azis layers. 

In the next section, prior to considering the computational solution of the problem 
P1, some extension of the concepts of Ref. 29 will be applied to a generalization of P1 
to handle pressure boundary conditions. The numerical solution of this problem was not 
attempted within the contractual eirort. 

2~1 Treatment of Pressure Specified Interface Boundary Conditions 

In what follows, the flow structure in the region close to the interface, hereinat~er 
called the wall layer, will be determined for pressure data specified on the interface. This 
provides a modified far field for the variational problem from those appropriate to free 
jet and solid wall conditions. The v ~ l  layer as well as the other flow regions have beezl 
identified in Fig. 2 of Ref. 29 and the inset of Fig. 2. Although the pressure boundary 
condition theory was called out as a contractual requirement in connection only with 
the high aspect ratio code associated with "I~sk 3.0, the contractor deemed it useful to 
develop a corresponding theory for the slender body code written under Task 1.0 in the 
Work Statement of the contract. This software presently handles solid wall boundary 
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conditions. The formulation of the computational problem for pressure specified boundary 
conditions will be given in which the free jet conditions are a special case. This discussion 
in this section will be restricted to axially symmetric pressure data on the interface. This 
limitation will be removed in a subsequent section. 

Referring to Fig. 2, the orientation of a slender model as rela~d to a cylindrical control 
surface delineated in the figure is shown. The set up is similar to that described in Ref. 29. 
However, a pressure boundary condition is to be ~ppcified on the cylindrical interface $c. 
These pressures are assumed to be obtained by s,zitable messurements such as from static 
probes and rails. The pressure distribution is also considered to be an arbitrary function of 
the streamwise coordinate z and in a later section '.he angle variable 0. Such distributions 
can be associated with the following effects: 

• Wall boundary layers 

• Noneircular cross section walls such as octagonal and rectangular test sections 

• Yaw 

• Asymmetric control surface deflections. 

Moreover, the pressure specified formulation is relevant to the two variable method, 
adaptive wall applications, and our recently developed combined asymptotic and experi- 
mental interference prediction (AIM) method. 

2.1.1 KG Theory 

For a self-contained account, some of the analytical developments which are common 
to the solid wall analysis will be repeated here. The viewpoint will be similar to the solid 
wall case, i.e., a secondary approximation of large radius h of the control surface (shown 
schematically in Fig. 2) within the basic approximations of the Karman Guderley (KG) 
small disturbance model. Thus, the body is represented as the sudace 

r = 6F(z,O) , (2-I) 

w',thin the c~ordinate system indicated in Fig. 2, with 6 = the characteristic thickness 
ratio, and overbars representing dimensional quantities. 

The asymptotic expansion of the velocity potential • in terms of the freestream speed 
U is 

~ + 62~(z,~,O;K,H,A) + ( 2 - 2 )  - -  ~ e m o  ' 

U 
which holds for the KG outer limit, 

z,~=6r, O,K=(1-Mi)/62,H=h6/c,A=,~/6fixedas6~O, ( 2 - 3 )  

where Moo = freestream Maeh number, K = KG similarity parameter, H -- scaled height 
of control surface, A = incidence parameter. For (2 - 3), the ideas of Ref. 29 and the 
pressure formula valid on the interface, 

= -26 (2 - 4) 

give the following (primary) KG formulation: 

6 
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2.1.2 Problem Q: 

( K -  (~ + 1 )÷ . )÷ .  + ~ (~F) ,  + = 

lim ~÷p = S ' (z )  
~-,o 2--'~ ' O < z < l  

4 ,~ (z ,O)=O , z > l  

÷.(=,H,s) = / , (= ,s ;H)  =-Cpl2~ ~ 

~(~, ~ ,  o) = / ( ~ ,  o; ~ )  

( 2 - 5 ~ )  

( 2 -  5b) 

( 2 - 5 c )  

(2 - 5d) 

(2-r,d')  

Here, S(z) - streamwise area progression of the test article, S ( ~ )  - dimensional cross 
~etional exea, • = dimensional coordinate in ~ s t r e a m  di.-~c~icn, and S(z)  = "~( ~)/6~L ~, 
where L is the body length. Problem Q above represents s generalization of those discussed 
in Ref. 29 because of the fully three-dimensional nature of the equation of motion ( 2 -  5a) 
and in accord with the previous remarks, the more general nature of the external conditions. 
The l~tt~ are given by either (2 - 5d) or (2 - ~t~). 

2.1.3 LarE;e H Theory 

The secondary expansions associated with H --* so will now be considered. It is 
anticipated thaG the structure of the various layers, i.e., Axis, Central, and' Wall layers 
show,~. ;n Fig. 2, will resemble those for solid walls. Accordingly, these representations are: 

2.1.4 Central La~er 

= ¢o(z,~) + ~,~/,(H)~z/2(z, e,O) + ~,l(H)h,(,, ~, o) + . . .  

x ffi K~ + ~ ( S ) K 7  + . . .  

A = As + ~I(H)AI + " "  

which hold in the central limit 

(2 - 6a) 

(2 -6b)  

( 2 - ~ )  

z,~ fixed as H ~ oo . 

These lead to the following generalized hierarchy of approximate equations: 

2.1.5 

2.1.6 

Free Field Approximation 

1(~÷o,)~=o (K~ - (~ + 1)~o.)÷o.. + 

Variational Equations 

(2 - 7a)  

1 1 
( x ;  - (-~ + I)~o.)÷I/2.. - (-r + I)÷o.÷|/2_ + ~(~÷~/, ,) ,  + D-~,I=,, = o (2 - 7b) 

7 
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1--~1 = 
(K; - (~ + 1)~0.)~1_ - (~ + 1)~1.~0.. + ~ ~2 , .  

where vl(H) - pl(H) to keep the forcing term in (2 - 7c), and to address the possibility of 
adjusting K~ as a Mach number correction to achieve interference-free flow. The significant 
complication of Eqs. (2 - To) and (2 - 7c) over their solid wall counterparts is the presence 
of the terms involving 0 derivatives. On the other hand, a substantial simplification from 
the Problem Q is the allowability of factorization and superposition due to the Unearity of 
these equations. As will be seen, the angular dependence of the far fields for these problems 
involve simple factors such as cos 8, ~ s  20, etc. It is envisioned that this dependence can be 
factored out, e.g., by allowing ~bl = ~1(z, F)cos 0, which gives a two--dimensional equation 
for ~1. Also to be confirmed by matching is the assertion that the far field for ~b0 has a 
similar structure to that given in ROf. 29. 

2.1.7 Wall Layer 

The appropriate representation is assumed to be 

= eo(H)~o(x t , r t ,e )  + e1/2(H)~P1/2 + el~P1 + ' "  , (2 - 8a) 

for the wall layer limit, 

r t f F / H  , fixed a s H ~ o o  z t -- z/H , (2 -8b)  

Substitution of (2 - 8a) into the KG formulation gives 

0(~0) : z[~0] = 0  ( 2 - 9 a )  

0 ( ~ , , 4 / ~ )  : L [ ~ , ]  = ((.y + 1 )~o . ,  - K ~ ) ~ o . , . ,  , ( 2 - 9 ~ )  

where 

L _ K ~ z f + .  0 A t , A T - - r t a r t  r t ~  +rt '@49 2 " 

2.1.8 Behavior of ~0o near Origin 

j ( . ) ,  As in the solid wall ease, if R t = ~ + F2/H, the source-like behavior: 

s 1, / 1 1 ~° -~ ~ -4,~R'---'7 +""  ' ( 2 - 1 , )  

is anticipated. 

From (2 - 5d'), the similarity form, 

1 fCz, O;S)- -~.fczt,o) (2-  11) 

9 
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is appropriate, and leads to the boundary conditions 

~Oo(xt, l ,0) = f (x t ,o)  = f (z t ,  o + 2~r) (2 - 12a) 

If 

Then (2 - 10) implies 

cpl /2 j  (:r t ,  1,0) = 0 

At 0 1 0 (r,  a_a_~ 1 0 '  

S ( 1 ) . ,  t , ~ + ( r t )  
At.uo = v ~ o t z  )'2-'~Trt~ 

With the following exponential Fourier transform pair 

( 2 -  12b) 

(2- is) 

~-"o = / 2  e-lkxt~°dXt 

1 /2 ¢ikxt~°dk CPO "- ~'~ 

the boundary value problem for ~0 corresponding to (2 - 10), (2 - 12a) and (2 - 13) is 

/,~o = ( At - t2) ~o =0 (2 - 14a) 

lira r td~° 1 S(1) ( 2 -  14b) 
,t--o dr* = 21r V~o 

~o(1, @)= 7(S,k)= 7(0 + 2~r, k) (2- 14e) 

In contrast to the solid wall case, the decomposition of the solution into the fundamental 
solution M0 and a part M1 that is bounded at X = 4-oo as indicated in Eqs. (12) of 
Ref. 29 is not required since with the Diriehlet conditions, there ran be mass flow through 
the interface to eliminate the solid wall source flow division st upstream and downstream 
infinity. The eigenfunction expansion solving (2 - 14) is 

¢-o = AoKo(krt) + BoIo(kr*) + ~ Z.(k,t){B. cosnS + c . s in . s}  
n----1 

, (2- ~5) 

where K0 and In are Bessel functions, the periodicity condition in (2 - 14c) has been used 
to determine the eigenvalues ~n = n, n - 0,1,2, . . . ,  and (2 - 14b) has been utilized to 
eliminate the Kn for n > 0. 

10 
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Application of (2 - 14c) and inversion gives finally, 

1 ~Oo = ~ ~o°°coskXtdkf S(~l).; V ~  [ / o ' - f~K° (k )  - K°(krt)] 

+ Io(krl)xo(k____T ~o'"](O'})dO} 
coskx ~ d k  • 7(o',k)cOS;,(o-O')dO' 

+ ~ z_,- I.(~) Jo n----1 JO 

(2-16) 

The integrals in (2 - 16) are convergent since the Bessel ratios decay exponentially as 
k --, co and are analytic as k ~ 0. 

As indicated previously, for the analysis in this section, the 0 variation will be sup- 
pressed. This may be realistic for many practical applications for nearly circular test sec- 
tions and interfaces in the intermediate region of slender body theory discussed in Ref. 30. 
For convenience, the f distribution has been assumed symmetric in X, i.e., f (X)  - f(-X), 
to ¢.btaln (2 - 16).* Therein, the exponential transforms have been expressed in terms 
of cosine integrals. The analysis can be readily generalized to handle unsymmetrical / 
distributions. 

2.1.9 Asymptotic Representation of (2 - 16) as R t --, 0 

To obtain the required representation, the following integrals are considered: 

Zo(krt) dk. 2= :h = Jo® coskxt~_., f0 7(o,.)do 

:r'= fo°° { I°(krt)K°(k) -K°(krt)) 

~_lf = ""tI"(kr')" f"-/(O',klcosn(O-O')dO' ~ 5  - "  COS £.A ~ G K  # 

_ z.(k) .to 

(2 - 17a) 

( 2 -  17b) 

( 2 -  17c) 

Consistent with the assumption of axisymmetric interface pressures, Is  WIU not be consid- 
ered here. By approximating/'0(kr t) and cos kX t as R t ~ 0, and term by term integration 
of the series obtained, the following approximation for ~0 results: 

~0 0 --- 
s(1) 

4.v/~TR* + (~ + Vo) + (Co + Vo) R,'P2(cos~) 

+o (R,') 
(2 - l S a )  

* This restriction will be removed in Section 2.2. 

11 
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where 

_ s(1) [ Ko(k)dk 
V,'-~',,-~ Jo ® ZoCk) 

.,40 

Bo=lfo°° dk fo °° Xo(k) I ( x ' )  co~ k X ' d X  

lfo~k'd~fo °° Co = - ~ Zo(k) fCX*) cos kX*dX* 

-S(1)  k2goCk)d k 

(2- 18b) 

C2-18c) 

(2- ZSd) 

(2- 180 

Here, to is the scaled analogue of the polar angle defined in Fig. 2 i.e., to = e ~  -x XtlRt 
and P2(cos to) is a Legendre polynomial. 

The constants given in (2 - 18b)-(2 - 1Be) are all given by convergent inte~als. In 
particular, ~9 converges if 7(k) is bounded as [kl --* oc, and even under milder conditions 
on 7. This results from the potent exponential decay of I0. No problem is encountered as 
k --+ 0 since the integrand is analytic at that point. 

The terms involving B0 and Co give the effect of the pressure boundary condition. 

2.1.10 Matching 

For purposes of matching, the following asymptotic approximations for the wall layer 
and central region are appropriate: 

~ceutral 
U 

+ g i ( c ~ a , ,  - ~ t o ) +  v c ~ R ~ P , ( c ~ t o )  

+ m/ , (H)~ , / ,  + m (,,oR'p,(cos to) + . , R c ~ t o  + ~,,) + . . .  
a S  .R --# ~ 

(:2- 19:) 

r s ,,r i ]} ,t,o L 

+ " "  , v~s Rt "-~ 0 
(2 -  20) 

where ,4o, B0, 6'0, and ,4 are constants that have been previously defined in Ref. 29 with 
(~+1)S~(I) 

a corrected value for 6"0 being 10Slr2Konl 2 . 
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Preliminary matching considerations govern the selection of the various elements com- 
prising (2 - 19) and (2 - 20). The ~1 coefficient of pl represents a harmonic solution of 
(2 - 7c). The response to the nonlinear forcing terms (7 + l)~b0=~l.= and (q, + 1)~b1.~b0=. 
are decaying terms as R ---, co that are higher order to the order of the matching and can 
be neglected. Regarding (2- 20), ~I/2 and ~,, the coefficients of ei/2 and el, respectively, 
consist partially of X t derivatives of ~0, such that the mnltipole expansion has primary 
singularities which are source, doublet, and quadrupole forms with their appropriate re- 
flections. Thus, the reflection of the doublet is an X derivative of the sources, and the 
quadrupole has the same relationship to the doublet. 

For matching Eqs. (2 - 19) and (2 - 20) are written in the intermediate variable 

R 
R .  = -- (2 - 21) 

T/ 

which is held fixed as H ~ co. The gauge function 71 is an order class intermediate between 
1 and H as H -~ co. This is expressed symbolically as 

1 << n(n) << H ( 2 -  22) 

Thus, 1 ~ 0 as H ~ co, and n I ~ 0 as H --, co. For axial symmetry of the interface 
pressures, the matching process is almost identical to that discussed in Ref. 29. The only 
~]ifference will be the redefinition of certain constants associated with the strearnwise inte- 
grals of the specified pressure data as well as the switchback terms. For understanding of 
basic issues related to the extension to non-axisymmetric interface pressures, the matching 
is diagrammed in Fig. 3. 

Referring to the figure, the various labeled terms denoted by the circles give the 
following matchings: 

sl =~ C) ~ C) = ~ A 0 = - ~  , eo 

@ -  @ matched 

®,-,. @ , o f -  

® ® , ~ P112 = -~ , ~l12 = .4o + Be 

@ ,-,. ® , ,,o=eo+Z,o 

Q .-. @ =,,,,--ooo 
As will be seen in the next section, the non-axially symmetric case requires additional 
terms in the wall, central, and axis layers to deal with the effect of the higher harmonics. 
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I¢10141 

® ® ® ® 
/ ' 1  

4,{_..~,~,,,, = 2 -~ ( A0 Bo • . ,  3~ - co6~) + v/ '~.~n3 

+ t I ,,L;~ s J 

Fig. 3. Matching  of central  and  wall regions for axially symmet r ic  interface pressures. 
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The matching of the central layer and the axis layer proceeds along similar lines to 
that given in Ref. 29. All that is required is the essential result for the boundary condition, 
which is 

~ , , (z ,0)  -- 0 (2 - 23) 

The expression for the interference pressure remains the same as that given in Ref. 29. 
However, there is an implicit dependence on the interface pressure data through the far 
field influence of the terms involving the constants Be and Co defined in (2 - 18c) and 
(2 - 18d). Also, the flux of streamwise momentum of the interference field through the 
interface must be considered in the calculation, of the interference drag. The implicit 
dependence on the interface pressure data is shown in the fonowing altered problem P1 
denoted P2 for the interference potential in the central region ~1. 

P2." 

1 
(2 - 24a )  

~ l , ( z ,  0) = 0 

¢I ~- "0R2P~(cos~) + ,,1Rcos~ + a2 as R ----* co  

(2 - 24b) 

( 2 -  24c) 

where 

a0  = Co + :Do (2 - 24</) 

a l  = B 0 ~ 0  (2 - 24c )  

8=b0A = ~0C (2 - ~ f )  fit 2 ---~ V / ~  

For the free jet case, Co - 0 in (2 - 24d) and No - 0 in Fig. 3. Solid wall conditions are 
modeled by making ao = ~ = boS(1)/V~o, with a l  - 8~Bobo, with bo = .063409". 

2.1.11 Discussion 

Because of the relationship of P1 to P2, the computational algorithm which has been 
developed for the solid wall case can be used to solve P2 with corrections of the indicated 
constants and the post-processing subroutine DRAG1 to account for the flux of streamwise 
momentum through the interface. Note here that the effect of a2 in (2 - 24c) can he 
neglected. 

* The determination of this value is discussed in Section 2.12. 
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2.2 Generalization to Angular and Unsymmetrical Variations 

Summary 

In this section, the pressure boundary condition asymptotic analysis given in Sec- 
tion 2.1 is extended to handle angular interface and unsymmetrical variations of measured 
pressure. 

Central Layer 

With the generalized angular variation at the interface, (2 - 6a) i0 anticipated to be 
modified as 

= ~o(Z,~)+pl/2(H)~/2(z,~,O)-I-pa/,(H)~a/,(z,~,O)+l.'l(H)~l (z,~,O)+-.. ( 2 -  25) 

As compared to (2-6a), (2-25) contains an extra term (indicated by 3/4 subscripts). This 
insertion is required by matching consideraticdas assodated with the more general class of 
L'-.te~--~ pressure distributions involving angular and asymmetric streamwise variations. 

The analysis and results are such that Eqs. (2 - 3) to (2 - 6) remain unchanged. 
Reflecting th-. more general interface distribution the expression for ~00 becomes 

~0 = 4~2 v ~  ~ + ~ ~=1 ~ (0~ co. no ,  P~ sin n0) (2 - 2~) 

where 

O, = f_~ ~'o (r"t)-K°Cr) e '~X'xoCr)  dr (2 - 26b) 

02 = / _ ~  x0 (r,.*) ~hx, dr (2 - 20~) 

O~=/~,, ,x,  7_.(~) drj ° 7(S,r),~,-,SdO ( 2 -  26d) 

p. = / _ :  e~x, x. (r,*) 2. x.(r) dr fo -/(O,r)sin.OdO (2 - 2ee )  

Upon expanding the integrands in (2 - 26) for small R, and with considerable algebraic 
manipulation, the asymptotic expansions of the integrals can be obtained. The methodol- 
ogy exemplified in Ref. 29 involves expansion of the Bessel functions for small r t and the 
e ikx* kernel for small X t and gives a series that can be integrated term by t~m. These 
integrals are convergent for the ray limits (R t ~ 0, 0 fixed) of interest. 
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Collecting results, the desired expansion of ~0 is 

~Po = R~'" + JIo + Bo + JI.olXt 

+f.ortcosO+.~'ortsinO+Xt(~olrtcosO+~'mrtsinO~ 
~ " ( 2 -  270) • \ x3~ x , =  / 

por t cos 20 -}- 740r P sin 20 

#2--z2 •z 

(Co + 2)0) Rt'J'~(~os ~) + . . .  

-#here the terms shown under those in (2 - 27a) are listed to indicate their correspondence 
with spherical hermonics and the spherical coordinates are as shown in Fig. 4. 

SC50443 

j 

y 

-- X + 

Fig. 4. Spherical coordinates. 

From the asymptotic expansions, the constants in (2 - 27a) are: 

,.q(1) 
,400 = 47rV ~ 

s(1)  °°K0(k)ak , 1 f 2  dk 2. /° =o- c.. /o 

= 4~--~ Xo(k) o, k)dk 

(2- 2~b) 

(2 - 27c) 

(2-2~d) 
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~ ,  / ~  k'dk /o2" ~ / ~  kdk /o2" ~o = Re i ~ -/ cos OdO , ~ = Re _ x, ( ~. ) -/ ,in OdO 
(2-27c)  

£°l = 4~Re i /_~ k2dk ' -~elel =1-1"Re i /_°°oo k2dk /o2¢f 2 I - ~  

(2 - 27f) 

S(1) " [oo k~Ko(k) ., 1 kZdk I fR'--dO ( 2 -  27g) 
Co = - 4 a . 2 V ~  Jo ~ a~ , Do =-~"~'~2 Io(k) .Io 

0o = 4 . '  ~ 7cos20d0 , 7~o = - 4 - ~ R c  -r2-~- ~ 7sin20d0 

( 2 -  27h) 
Matching 

Using the intermediate limit described in Section 2.1.10, matching of the central and 
wall regions is schematically indicated in Fig. 5 in which both representations are written 
in terms of the intermediate variable Rn defined in Section 2.1.10. It should be noted that 
nonlinear elects are associated with Poisson equation forcing terms such as ~bl,~b0,, in 
(2 - ?c). The Poisson form is associated with R --* co ray limit of the central region low. 
In Fig. 4, ft (1) is a particular solution of the equation 

(d dflO)) riO) 
1 s i n ~ - - - ~  + sin2----- ~ = ctmw sinw 

(2 - 28.~) 

and f~(2) is the solution of 

(_~. daC2)'~ a¢2) 3PaCc~,,,,) + 2P, Ce~,,,) I - -  + = 

sinta 5 
(2 - 28b) 

As indicated in Section 2.1.10, the matching of the central and axis layers proceeds 
along similar lines to that discussed in Ref. 29. 

All that is required is the essential result for the boundary condition, which is 

¢ 1 , ( z , 0 )  = 0 

The expression for the interference pressure remains the same as that given in Ref. 29. 
However, there is an implicit dependence on the interface pressure data through the far 
field influence of the terms involving the constants defined in (2 - 27c) to (2 - 27h). Also, 
the flux of streamwise momentum of the interference field through the interface must be 
considered in the calculation of the interference drag. The implicit dependence on the 
interface pressure data is shown in the following altered problem P1 denoted P2 for the 
interference potential in the central region ~bl. 
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~)centrsl t 

PRESSURES SPECIFIED ON INTERFACE 

I 

l 

+~ 

+ cd 

(~''tl 1 - - = z + 6  s 
U 

+ 71~ 
J 

! 
+~ 

1 + H.-- ~ 

¢1C + - -  
JJ 

Fig. 5. General case of matching of central region and wall layers. 
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P2____~: 

I 
[K~ -(7+ 1)~bo=] ~bl== -('7 + 1)~o=~blffi + ~ (@~bl,)~ = -K~dpo=, (2 - 29a) 

~1,(z, 0) = 0 

oso  i ~I '~" R2 t"~°P2(c°sw) + c°s~ 

+ sin 2 co cos 20 + ~44 sin 2 

+ R / ~ + sin + ~ ") /.i _t cos ~ ~o cos O] 

+ . , 4 2 + ' "  as R ~  co 

where by Fig. 5, with B and C defined in Ref. 29 

(2 - 29b) 

(2 - 29c) 

.A---~ -- Co + Do (2 - 29d) 

2.2.1 Discussion 

m m 

.At = 2B.Ao (2 - 29e) 

.42 = 2cc~ = 2s (co + ~)o) (2 - 29f) 

~4~ = ao (2 - 29g) 

.44 = 74o (2 - 29h) 

~4s = ~'oi (2 - 290 

,4-~ = ~01 (2 - 29j) 

The problem (2 - 29a)-(2 - 29c) is the generalization of the Problem P2 given in Sec- 
tion 2.1.10 accounting for asymmetries in the stream~se distribution of the interface pres. 
aures a8 well as angular 0 satiations. These effects are given by the terms marked as (D 
- (~) in (2 - 29c). They represent averages of the early harmonics which ¢o thb order ~s 
all that the far field u sensitise to. The specialization to the free jet case is obtained by 
setting Do ffi go = 74o = ~1 = .~'ol -- 0 in Eqs. (2 - 29). 

2.3 Shock Jump Conditions 

An important element to be considered in the numerical solution of the Problem P1 
referred to in the previous sections is the satisfaction of the shock jump conditions. For 

20 



AEDC-TR-91-24 

the free field case, these relations are satisfied by the divergence or conservation form 
of the Karman Guderley small disturbance equation. These give the Rankine Hugoniot 
jump conditions. They are satisfied using type sensitive shock captming schemes such as 
those originally developed by Murman and Cole in Re/. 31. On the other hand, the wall 
interference corrections related to the Problem P1 have to be satisfied by use of explicit 
relP.tions. These have been derived for the high aspect ratio transonic lifting llne theory 
fo, mulated in Re/. 32. These relations wiU be derived for axisymmetric 3ow in this section. 

Referriag to Fig. 6, conditions across the shock front denoted as S will be discussed. 
Thi.~ |=urface is given by 

s = = -  g ( O  = o , (2  - 30 )  

where ~ = 6r, and consistent with the Problem PI delineated in Ref. 29, axial symmetry is 
assmaed. The Problem P1 describes the wall interference flow away from the walls on the 
r.x'is of symmetry of a cylindrical test section. The velocity potential in this zone, denotcA 
by ~, is given by the asymptotic expansion scs4.zss0z 

r 

U 

X - -  
/ ~ - S H O C K  

=,= 

X 

h 

x 

E 

SHOCK SURFACE~ 

Fig. 6. Orientation of shock surfaces. 

= = + ~o(=,0 + _ + -~-T¢,(=, 0 +'" U 
(2-31) 

where U is *.he freestream speed, the '~i are perturbation potentials, a~ is a constant, H is 
the wall height in units of the body length, and ~ is the confined body's thickness ratio. 
The secondary expansion in the braces in (2 - 31) is an approximation for the perturba- 
tion potential ~ which is governed by the Karmaa Ouderley transonic small disturbance 
equation (2 - 5a), with ~ assumed zero. 

Equation (2 - 5a) can be written in the divergence form, 

z{4}-{x'~, ,y+i4~} +i 
2 .. ~ (~¢,~)~ = o , (2 - 32)  
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where subscripts denote partial differentiation. Denoting the transverse velocity vector as 
t7 = ui'~, (u = ~b~), the ~ derivative term in (2 - 32) can be written as V .  ~7, where V. is 
the cross flow divergence. 

The integral form of (2 - 32), applied to the infinitesimal thickness (= e) volume V 
shown in Fig. 6 is 

/ / vL{~}27r~d~d:c  = O , 

and the d;vel~ence theorem gives rise to the flux form 

J+ [V - l "6 }2~ rFdF=O ' (2 - 33) 

where [ f ]  --;i:r~-..0{f(z, g +~)- -  .f(z,g --e)}, u = ~bz, and R is a unit vector normal-to S. 
Since (2 - 33) holds for an arbitrary ares, the integrand must be zero, 

[ ] Ku '7+1u2 + [~] .6=0 ( 2 - 3 4 )  
2 

Now 

_ v s  = r -  6 g ' ( ~ ) L  ( 2 -  35~ 
I v s  I %/1 + 0 ( 6  =) ' 

where {" is the unit vector in the = direction and ~ that in the ~ direction. Substituting 
into (2 - 34), this gives 

P ~ q 

By virtue of conservation of tangential momentum across the shock, the perturbation of 
the velocity vector ~" is normal to the shock surface. This perturbation velocity is given by 

U 

On the basis of tangential momentum conservation, 

( ¢ -  v O  × v s  = o , 

which gives 
[,,] = - [,,]g'(,=) (2 - 35) 

Eliminating g' from (2 - 34') using (2 - 35) gives 

K. (~ + I) ] 
2 "'  ["] + 

(2--36) 
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Since tangential momentum is conserved, the tangential velocity component to the 
shock is continuous across it. Upon tangential integration, and disposing of an unessential 
constant, the following relation is obtained 

[,~] = o (2- 37) 
Equations (2 - 36) and (2 - 3T) lead upon substitution of the asymptotics into the jump 
relations for the approximate quantities appearing in (2 - 31). To obtain a determinate 
set of quantities, the shock's representation is assumed to be in the same form as that for 
~, i.e., 

1 1 
g = go(~) + -gg,/,(~) + -~gl + " "  (2 - 38) 

Denoting f as a quantity of interest which has the same asymptotic form as ~, on the basis 
of (9 - 38) nnd Taylor's expansiou, 

1 
f(z, g) =fo(z, go) =1" -~'(fz/2(z, go) + g~/2/0. (z, go)) 

g~lsz tz~^~ 1 (2-39) 
+ -~' fso.. ,  ,=,,,, + ~ -  (f ,(z,  go) + glfo.(z, go)) 

By virtue of (2 - 39), substitution of the expansion (2 - 31) into (2 - 36) gives the approx- 
imate shock relations which are: 

0 ( 1 ) :  [ I K  7 + 1  - ---C-u0) ,,s] + [,,o1' = o (2 - 40a) 

+ 2[,0] [~1] = -g ,  ~ [,,o] [(k - (.y + 1)t,0)uo.] 
(2 - 40b) 

[K '+  I,,~1 [,,o. ] + uo 2 

+ 2[,,0] [~o.] } 

where ui ---- ~i, and vi - ~i~ where i is equal to 0,1. The quantity 911s can be shown to 
vanish on the basis of (2 - 37) which with (2 - 39) leads to the additional set of relations: 

O ( 1 ) :  [~b0]-0 ( 2 - 4 1 a )  

0 ( H - 8 )  : [~1] = - g l [ ~ o . ]  ( 2 -41b )  

It should be noted that the O(H -1 ), O(H -2) equations obtained in the process leading to 
Eqs. (2 - 40) are vacuous. 
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Equations (2 - 40) and a vorticity relationship to be derived in the next section 
complete the formulation necessary for the computational solution. 

2.4 Shock Conservation Laws for Wall Correction Flow 

In addition to the jump relations derived in Section 2.3, a useful conservation law 
can be derived for use in the numerical solutions. In analogy to the free field large aspect 
ratio case discussed in Ref. 32, this law "mJl be obtained using the divergence theorem. 
Considering the region shown in Fig. 7, the divergence form of (2 - 7c) (with ~ - 0 and 
dropping the stars on the K's) is 

o r  

1 

¢ .  (Kl~b0. + Ko~I. - (.v + 1)~b0.~bl.,K0~l,) = 0 , (2 - 42) 

where V. refers to the divergence operator in the z, ~ coor .dinate system in which ~ = V~0~. 
From (2 - 42), 

/ fs(K~o. - wq~x., KoCh,). ~dS 
where w - ('y + 1)~b0. - K0, S represents the surface of ~volution consisting of the sphere 
SR, R = R0, the cut S8 around ~ = 0, So around the shock or shocks, and ~ is the unit 
normal to the shock surface. 

N o w ,  s i n c e  ~b1,(z ,O) = O, 
I 

where I t  is the unit vector in the ~ direction. Also, f fsa can be shown to vanish to the 
order of approximation considered by virtue of Eq. (20b) in Ref. 29. From the previous 
section, with the first approximation of the shock shape given by 

I 

x = Go(~) 

where [ 

[,~o,] -c~,C~) 

] denotes the jump of the indicated quantity across the shocks and 

= 
r -  o~,(t)L 
~/~ + a~'C ,~) 

TI 

the desired conservation law is 

} [÷o.] d~ = o , (2  - 43 )  
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/ s.-~,/ 
, / 

L_ 

I 

SC85-30608 

X 

Fig. 7. Regions appropriate to shock conserwtion laws, 
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where So is the shock surfez~. 

2.5 Regularization of the Problem for the Correction Potential 4, 

To avoid the singularity at co, the problem P1 in Ref i 29 is transformed by subtracting 
off the far field for ~b,. Accordingly, the variable ~1 is introduced in PI,  where 

61 = ~1 - 6 F ~  (2  -- 44 )  

Here, 

1 M [ ~ ] -  (Ko-(~ + ~)~o.)~,..-C~ + I)~o..4,. + ~(~4,,)~ =-Ki lo . .  (2 - 4 5 a )  

and 
~ ~,, = 0 : (2 - 4 5 b )  

Noting that (for solid walls) 

(2 - 45c) 

8 8  

and 

where 

/o' 
w = polar angle defined in Fig. 1 

S(z) - model cross sectional area 

R = polar radius defined in Fig. 1 ' 

From (2 - 44) and (2 - 46), (2 - 45a) and (2 - 45b) become 

(2-46) 

• M 

~ ~,, = o 

~1 ~ 0 ~ ~  

{ f 2b~z 
+ ~0.. ~(~ + I)  

\Ko L 

8~'bo Bo + ~ l-K1} (2 - 47a)  

( 2 -  47b) 

(9.- 47~) 

26 



AEDC-TR-91-24 

where R = 6R. 

The slender body interference code will use the regularized form represented by Equa- 
tions (2 - 47). 

2.6 Basic Code Modules 

Figures 8 show flow char~s which give an overview of the interaction of the functional 
modules to be used in the design of the wall interference code under Task 1.0. The 
preprocessor ATF sets up the grid and inputs other parameters through the subroutines 
INITIA, INPUT. The input geometry data is read in from the disk file. The solver STINT25 
has primary subprograms denoted as RELAX1, OUTFNL, SONIC, DRAG1 used to solve 
the zeroth or(ier flow problem and RELAXVI, OUTFNLI, and DRAG1 for the variational 
problem for #I. RELAXI and RELAXVI are modules which respectively are the principal 
successive line overrelaxation routines which serve the purpose of solving the tridiagonal 
system for the free field and the interference problems. The tridiagonal solver is denoted as 
TRID. RELAX1 and RELAXVI include special treatment of far field, internal, boundary, 
and shock points with appropriate type sensitive switches. SONIC determines subsonic 
and supersonic zones, and OUTFNL and OUTFNL1 provide the basic flow and interference 
pressure fields as well as the quantities gi defined in Ref. 29 necessary to compute free field 
and interference drags. These are computed in DRAG and DRAG1, respectively. The 
relationship of the flow solving modules is shown in Figs. 8. 

2.7 Upstream and Downstream Far Fields 

For slender test articles that are sting mounted inside solid walls, the flow at great 
distances from the model behaves as a confined source in accord with the analyses given in 
the previous sections, Referring to the cylindrical coordinate system indicated in Fig. 9, 
far field behaviors were worked out in certain =ray limits" in which if R = v / ~  + r I and 
cosw - z / R ,  R ~ 0 for e fixed. The case ~o = 0, or ~r, i.e., = --, :l:eo however is degenerate 
and requires special treatment and had not been analyzed. 

For a properly posed numerical simulation of the finite height case, the structure of 
this flow must be properly modeled. This can be achieved using the Divergence Theorem. 

If z is the usual dimensionless coordinate in the freestream direction depicted in Fig. 9, 
then the transonic small disturbance formulation gives the following equation of motion 

1 (7+1) 
- , / , x x  + = (2  - 48)  

where K - -  (I -.~n~)/62, Moo = freestream Math number, ~ is the perturbation potential, 
and X - -  z / V ~ .  The slender body boundary condition is 

• s ' ( = )  (2- 49)  ' 

where S(z) is the cross sectionM area distribution for 0 _< z _< 1, and S'(z) is without 
great loss of generality assumed zero for 1 _< z <_ oo, (constant diameter sting). 
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Fig. 8. Flow chart for preprocessor and solver. 
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I 8OUNP. DAT 
ATFBOPT. DAT 
ATFBOPTV. DAT 

x, T VECTOR8, DX,GAMM1, GAM, 
PI, IMAX, JMAX, PHi, PLS, SBODY, 

PLS1, TAU, ETC. 
+ 

8TINT2S 
MAIN DRIVER 

RELAXI, RELAXV1 I 
(SOLVE DIFFERENCE 

EQ8) FOR 0 m AND 
PERTURBATION FLOW 

+ 

COMPUTE 
COEFFICIENT8 

Fig. 8. Flow chart for preprocessor and solver (continued). N in +,he notation STINTN denotes 
the Nth version of the main driver. 
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OUTFNL1 
COMPUTE 
g', Cp o, ~ p  

SONIC DRAG, DRAG 1 
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Fig. 8. Flow chart for preprocessor and solver (concluded). 
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A control cylinder is considered consisting of the wails (SH), an internal surface bound- 
ing the model near the axis, (S,), and the inflow and outflow faces (S-oo) and Soo, respec- 
tively. Accrranting for the impermeability of the wails expressed as 

] = 0 , ( 2 -  50) 
[e=H 

the ctivp.rg~mce theorem when applied to (2 - 48) gives 

(2 - s z )  
where V denotes the volume of the control cylinder. Evaluating the terms in (2 - 51), 

(2-52) 

From (2 - 5o~, 

/s. 0~ [ dS = O ( 2 - 5 3 )  
f'= H 

For a slender configuration, we assert that as in the subsonic case, the lift effect produces 
a Trelftz plane (z = co) flow component that can be represented as an infinitesimal span 
vortex pair rei~ected in the walls. This pair is the Trefftz plane projection of the trailing 
vortex' system from the body. Superposed on this flow is an outflow due to the source 
effect. A similar outflow occurs at z = -co .  Accordingly, we are led to the asymptotic 
inflow and outflow conditions 

~- C p F z  + Y(~, ~) as = ---, co (2 

cos e/ 

- -CFF= as = --, - ~  , (2 - 54b) 

where f(~, ~) is related to the lift, and the constant factor CFF appears in the rammer 
indicated in order to preserve the anticipated symmetry of the apparent source flow from 
the sting-mounted, finite base area model. In this connection, it is ixnportaut to note that 
Eqs. (2 - 54) are exact solutions to the nonlinear small disturbance equation ( 2 -  48). This 
is true even for f(~, ~), since it satisfies cross flow Laplace's equation. It should be noted 
that the inflow and outflow conditions to be specified at z - 4-o0 are independent of the 
form o f / .  

From (2 -- 54), it is clear then that 

/s. +s . a~ dS = 2~C~FH 2 ( 2 - 5 5 )  
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s_®/ l 
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~- "~x ~ S ~  

Fig. 9. Model confined by solid cylindrical walls and control volume. 

The last term to be evaluated in/,2 - 51) is the right hand side, which is 

~0 N ] 2  (7+1 )  0 (q '+ l )~0x  2~ ~d~ ( ÷ ~ )  dX - ~ {~(oo, ~) - ~(-oo, ~)} e~ 
2J-g ax 2vrg 

which vanishes by virtue of (2 - 54), as a milder condition of symmetry of the axial 
component of the far upstreanl and downstream flow. From this, as well as (2 - 51) 
to (2 - 55), it follows that the inflow and outflow conditions are, 

s(1) 
~,  ~_ 4 - 2 ~ r / / 2  a s  x ~ 4 -00  , (2  - 5 6 )  

; 

i.e., the apparent source strength is proportional to the body base area. Equation (2 - 56) 
is used in the numerical simulation of. the flow field. 

A complete asymptotic expansion based on the eigenftmction expansion for a confined 
point source given in Ref. 29 can be used to obtain refinement of (2 - 56) and treat the 
transonic case. From Green's theorem and the properties of the Green's function G, the 
perturbation potential ~ in the confined incompressible solid wall circular cross section 
case is i 

1 f01 1 ~01 e-A'l=-~l J0(Anr) A ~ * = 
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where the summation is over the elgenvalues A. which solve the following secular equation 

3, = 0 . 

Thus, 
A1H = 3.8317 

.~2H --- 10.1734 

AsH = 13.3237 

From these eigenvalues, it is clear that for moderate H, the confined flow decays much 
more rapidly upstream and downstream than the free field, with the former demonstrating 
exponential relaxation to the freestream and the latter, algebraic behavior. 

Based on these considerations, and extension to compressible flow which introduces 
a nonlinear volume source the expression for the asymptotic upstream and downstream 
behavior is 

{ 
+ TST as z --* .'koo 

(2 - 56') 

where TST = exponentially small terms which are 

O ( e - ~  I'1) as [zl--,co 

1 

V = $ ( z ) d z  

The last term in (2 - 56') represents the average kinetic energy of the horizontal pertur- 
bation of the flow. 

2.8 DifFerence Equations for the Wall Interference Correction Potential 

A successive line overrelaxation (SLOR) algorithm for the large height correction 
potential has been coded. The initial approach is to use modifications of type sensi- 
tive switches developed by Murman and Cole sl, and pseudo-time operators devised by 
Jameson 33 as well as generalizations of the procedures developed in Ref. 34. Results to be 
discussed, for the full nonlinear finite height theory algorithm show good convergence for 
'transonic Mach numbers. 

The basic code modules to treat this problem have been flow charted in Fig. 8. Prin- 
.cipal modules are RELAXI and RELAXVI which are used to solve the discretized form 
of Eqs. (2 - 47) by nonlinear iteration and SLOR. Some highlights of our approach will 
now be outlined. 
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Applying the SLOR approach to Eqs. (2 - 47), the discretized form is 

2{ (I- #ii)(COEFo)~i (,~+I-w-*4+- (lzi+, z~ -w-i)~i 'w-1~+ (l-w-i---!)~i-~+-i)z~ - zi_, 

"[" ~i-l,i k Zi -- Zi--I -- Zi--1 -- Zi-2 / 

-(~,+ 1)(4,o..),i L ,q :,,_--q 

+ (0,(~,+~ - ~i-~) v ' i + ,  - ' ~ i /  

a n d  

r i +  1 --  r i _  1 

, (2 - 57a) 

• = Ko + 4,o.. + ~ ) ~ - ~ o  + ~ / -  K,)  ,~ , ( 2 -  571,) 

(COEFe)ii (Ko -(7 + 1)~'o.),i (2-57c) 
0, for COEF0,j > 0 (subsonic flow) 

pij = 1, for COEF.,i  < 0 (supersonic flow). (2 - 57d) 

Here, (RHS)~j is the discretization of the forcin K terms in (2 - 47a), ~ is a relaxation 
parameter chosen such that 1 _< w <_ 2, the plus superscripts signify current values, the 
quantities without plus subscripts denote values from the' previous sweep through the flow 
field, quantities with i subscript only, have j suppressed, and j subscripted entities have 
i suppressed. The structure of (2 - 57) is similar to that for the free field dominant and 
finite height (fully non,near) problems with the following exceptions: 

1) For the nonlinear problems, a factor analagous to COEF0, COEF appears, involv- 
ing the actual dependent variables rather than a known quantity, giving a nonlinear 
dii~erence equation rather than the linear form (2 - 11). 

2) Eq. (2 - 57a) contains a first order linear contribution and a right hand side (RHS)di 
absent in the no~]inear free field and finite H problem. 

3) Artificial damping has been used for the nonlinear problem but may not be required 
for the 1inear one. 

4) (COEF)0 by its nature is fi, ozen in pseudo-time, whereas COEF is constantly being 
updated using time linearization with ~,  given by its value at the previous sweep 
(time level). 

5) Additional boundaries associated with the zero th order shocks are required in the 
problem across which the perturbation shock conditions need to be satisfied. 
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Note, for bodies with pointed tails, Eq. (2 - 57to) specializes to 

(P~S), j  = 8,,boSo('~ + :~(~o..),~ (2 - 57b') 

The tridiagonal system for ~i is then 

Bj~_, + v~w + A~w+, = c~ , ~ = ~,~,... , ~ A x  -: (2 - 5 8 . )  

Dj___2{(I_po)(C?Fo) / 1 + 1 ) 

- p,-, j (COEFo),_Ij (z, _'I"z,_I + z,-1 -1 z,-,') } / (z,+1 - z,-1) 

_ (')' + I) (~o..),j _ 1 { ~+I + ~.~ + ej -i" ej-1 } 

Bj : ~i(O+, - : - : )  : - r i - 1 /  

1 (C,+, -I- 'j '~ 

Oj = - 2 {  (1-Pi')(COEFo)" ( ~'+I - (1-w-')~' -z`+1 =, (1- ~'---'-)@-'~i-- @+-')z, - z,_, 

(2 - 58b) 

(2 - 58c)  

(2 - 5Sd) 

~'+~+-1 + ~+-1-~,-.___22 - ( 7 +  1)(@0_),j :,--:~'-1 
(2 - 5Se)  

At the body, j = 2, and the previously indicated boundary condition, @l, = 0 implies 

D, = V~ >' + I___ ( 2 - 5 9 . )  
r2 r3 

B2 - 0 (2  - 59b) 

Also, A2 and C2 take their specialized values at ~ = ~2 (with rl = 0). 

In (2 - 58) and (2 - 59), the #ij are designed to provide the necessary type sensitive 
switching and implementation of Murman's shock point operator defined in Ref. 35. This 
behavior is essential not only for the zeroth order solution but the variational one as well. 

Subsequent sections will describe the scheme of shock fitting that interacts with the 
di~erence equations (2 - 58) and (2 - 59). 

2.9 Finite Hei~ht Application of Zeroth Order Code 

As indication of an application of the zeroth order part of STINT25 calculated by 
RELAX1, an equivalent body of revolution representative of a transonic/supersonic 
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blended wing fighter configuration was computed in a solid wall wind tunnel. The cross sec- 
tional area progression of the model is indicated in Fig. 10 which shows curvature changes 
associated with such geometrical features as wing-body ifitersections, canopies, and inlets. 
One purpose of this study was to explore aspects of the application of the code to realistic 
airplane geometries. 

0 . 1 2  x 1 0 5  - 

0 . 9  x 1 0 4  

===~,  

tN 
e" 

im  

• 0 4  
" "  0 . 6 x l  
X 

¢n 

0 . 3  x 1 0 4  

0 . 0  I I ! ! I I 
- 2 0 0 .  0 2 0 0  4 0 0  6 0 0  8 0 0  1 0 0 0  

x {in.) ! 

Fig. I0. Area distribution of blended wing fighter configuration. 

As an indication of the flow environment for sub.,~equent wall int~ference studies, 
Fig. 11 shows the pattern of isoMachs over the configuration associated with Fig. 10 in a 
free field at M ~  = .95. These results could be practically obtained using the nonlinear 
analogue of the difference method associated with Eqs. (2 -57 ) - (2 -59 )on  a VAX computer 
in a CPU limited Fast Batch or interactive environment. The grid utilised 194 points in 
the z direction with uniform spacing over the body a~nd logarithmic stretching ahead 
and behind. In the ~ direction, a similar geometric progression spacing was used with 
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50 points. Nominal convergence* typically was achieved between 500 to 1500 sweeps, with 
more sweeps required at the higher transonic Mach numbers. 

I ! 
- 2 / 3  0 2 / 3  4 / 3  

2 / 1  5 w 

1 / 1 5  - 

0 
- 4 / 3  

X 

Fig. 11. IsoMachs over blended wing configuration in free field, Moo = .95. 

The complexity of the flow structure evident in Fig. 11 is to be associated with the 
multiple inflection points of the area progression and the possibility for envelopes to form 
in the steeply inclined wave system. In Fig. 11, a shock is formed near about ] of the 
body length from such an envelope process. 

Figures 12 and 13 illustrate the Mach number and surface pressure distributions at 
the same freestream Mach number for the free field environment and a solid wall confined 
case. To obtain a nominal simulation of the free field, the upper computational boundary 
j = JMAX was placed at H - 1.3 and homogeneous Dirichlet conditions were imposed 
there. Homogeneous Neumann inflow and outflow conditions at z -- 4-oo were also pre- 
scribed. For the solid wall simulation, H " 0.66 was utilized. Homogeneous Neumann 
conditions were used at j -- JMAX and Eq. (2 - 9) applied at z = :Eeo. 

* Defined a s  m a x  I<i<IMAX I ~ -- ¢ij  I = 10-5 .  
I ~ j ~ J M A X  
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. ~  H = 1 .32 "FREE FIELD" 
(NO FREESTREAM 
PERTURBATION 
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1600  ITERATIONS) 
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Fig. 12. Finite height solid wall interference effect at Moo = .95 on blended fighter con- 
figuration equivalent body m Mach number distribution over body. 
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PERTURBATION) 
ERRMAX -~ 0.00004 

_ 1500 ITERATIONS) 

0 H = 0.66 "CONFINED": 
FREESTREAM PERTURBED (~ 
ERRMAX "" 0.00008 

- 1300 ITERATIONS 

o o  

0 

I I l I I I 
0 0 . 2  0 . 4  0 . 6  0 . 8  1 . 0  

xlL 

Fig. 13. Finite height solid wall interference effect, at Moo -- .95 on blended fighter con- 
figuration equivalent body m surface pressures. 
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From the figures and in accord with simple one--dimensional gasdyaamic reasoning, 
the constrictive elect of the solid walls is to exaggerate the elect of stream tube area 
changes associated with body area changes. 

An experimental wlidation was performed of the 0th order solver RELAX1 based 
on one of the variable blockage ratio tests of a blunt nosed model (B-3) in the Langley 
8 and 16 foot tunnels, reported in Ref. 36. The test section was slotted sad slatted as 
well as octagonal in shape. For such s blunt body which locally violates smell disturbance 
theory, the s~ -~nen t  with the data is surprisingly excellent as show,, in Fig. 14. For this 
corrA.v~,'i~on, the special improved accuracy boundary di'scretiz~tion proced,~re.deseribed 
in thf. next section was used. The quality of the comparison is believed to be partially 
.~ttributable to this improvement. 

2.1n Improved Accuracy Procedures for Numerical "I~reatmeut of l~ody Boundary 
Conditions 

In the finite wall height application of the code, the interference pressures are com- 
puted as the diference between the confined and free field pressures. The numerical trun- 
cation error is a larger percentage of this difference than of either of the former quantities. 
This fact puts a greater demand on numerical accuracy than has bee~: stressed in state of 
the art codes. Accordingly, all error sources were evaluated. Some items considered within 
an incompressible and subsonic framework were: 

1. Accurate treatment of boundary conditions on axis of equivalent body. 

2. Proper application of upstream and downstream far'fields. 

3. Need for double precision on shorter word length computers such as the VAX to handle 
high frequency errors propngating on fine grids for large iteration counts. 

4. 'It-eatment of nose and tail sin~,mlarities. 

The techniques apply directly to the transonic case. Moreover, study of subsonic flows 
is particularly useful because of the availability of closed form analytical solutions to check 
the numerics. 

The second of Figs. 8 shows the subroutine RELAX1, which solves the tridiagonal 
system representing a discretized approximation of the transonic small disturbance partial 
diferential equation of motion (TSDE) (2 - 5a). It contains a special procedure which 
deals with the boundary conditions. These are satisfied by incorporating the condition 
of flow tangency at the body into the discretization of the vertical perturbation velocity 
flux gradient. In the nonlinear diference equation for the free field flow (2 - 57a), this 
corresponds to an approximation fulfilling the role of the terms in the braces on the left 
hand side near the equivalent body of revolution (EBR) line of symmetry, (z axis). One 
scheme employed is associated with Eqs. (2 - 59a) and (2 - 59b) .  

Figure 15 is a schematic representation of the nodes relevant to the boundary points. 
In the finite height case, this treatment is made more d ifBcult because the perturbation 
potential is logarithmically singular as the scaled radial coordinate tends to zero. Existing 
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Fig. 14. Vslidation of RELAXI code against Couch experiment, B-3 body, M - .99. 
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free field codes familiar to us do not properly deal with this singularity. ~ e r e a s  this 
limitation may he of moderate consequence to the prediction of free and confined pressures, 
in accord with the previous remarks, it is absolutely crucial to the treatment of interference 
pressures and testing of the variational equation solver. Accordingly, attention was given to 
the development o£ a scheme that accounts for the singularity in the boundary treatment. 

j=3 
5 
2 

2 

3 
2 

1 ~ x  

0 

x 

0 

X 

0 

Fig. 15. Nodes in vicinity of axis. 
I 

Referring to Fig. 15, the discretization of the third term, 

i 

T = ~ ( ~ 0 , ) ~ ,  (2 - 00) 

in the TSDE will now be discussed. This is the vertical flux gradient previously indicated. 
Shown in the figure are the first 3 (j)  vertical node points as well as ~ node points. If 
~ j , j  ffi 1, 2, . . . ,  J M A X  represent the j mesh points, 

r#+,/2 = (r#+, + r # ) / 2 ,  (2 - 0z) 

we consid~ (dropping the sdb~cript ,.ero on ~ ~ d  the tildes on r), the discreti-.ed version 
of r - Ti, given by 

r $ 

Using the half node points in the vicinity of the z axis 

1 (r~r)sl2 - -  (r~r)sl2 
T2= 

r2 r s l2  - r312 

(2-62) 

(2  - 83)  
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The essential new idea is that a "regularized" version ~ of the perturbation velocity po- 
tmtial  ~b is introduced, where 

~= ~ -  S2~  ) ~ r  ( 2 -  e4) 

St(z) = streamwise (z) derivative of the EBR area progression. 

The logarithmic sing-clarity is represented by the second term in (2 - 64). Numerical dif.. 
ferentiation of ~ in the r direction is then accomplished by differentiating ¢ as the sum 
of a numerical approximation of its regular part and an analytical evaluation of the loger 
rithmically singular cor~ponent. The truncation error which would have normally become 
large due to the infm,ty on the axis will be substantially reduced using the differentiation 
of the linear polynomial representing the bounded quantity ¢. 

In accord with these ideas, the terms in (2 - 63) can be evaluated as follows: 

(r~r)s/= = (ra -t-r2)2..~_s - q~_.._..~ra - r, + 2~ r (~ r , ) / 2  = 2 - \ r, ~ '  + 

(rs +r=) { d:s-q~= - ~2-~= lnra/r= } S'(z) + - -  
2 rs  - r= 27r 

i s,<=> 1 s,<=> (r#,h/,fr,/,{~, ,/,+2-~/2}=r,/,¢, + 
s/z 

(r2 + r~) ~2 - ~ I n r 2  g(=) 
2 r2 - r l  

w h ~ e t ~ f a c t t h ~  
# ~ ~ I n r + g ( z ) + - . .  

has been used in (2 - 65b). Noting that rl  = 0, and collecting results, 

I [ ~  S'(z) - ,(z)] 
- - -  2 lnr= 

rs 2~ 
Accordingly, the tridiagonal system d]scretizing TSDE 

j : 1 , 2 , . . . , J M A X  B~#i-1 + Di~ + A~i+, = C~ , 
at j : 2, has in accord with (2 - 67), 

B 2  = 0  

A2 = A~ >21.~=2 

z)2 -- J:)~>=ls=2 

C J> 2 C2 :  j .  I j = 2 + ~ '  
i ,(,)} 

2~r2r s  I. 2~  L rs  - r= r2 

( 2  - 6 5 a )  

(2 -eeb)  

(2-oo)  

(2 - 67) 

( 2  - 6 8 a )  

(2 -68b)  

(2 - 680 

( 2  - 6 8 d )  
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In the computational implementation, g(z) is initialized.as zero and then updated each 
iteration using (2 - 66). For (2 - 68d), g(z) is "time linearized" from the previous iteration 
without relaxation. As an additional refinement, it is useful to note that the three dots 
in (2 - 66) 

_- S'(=)~ ( r 2  l n r  ~.) .  

in incompressible and subsonic Praadtl Glauert flow, and is an O(S"(z)r ~ In 2 r) expression 
at transonic Mach numbers. The updated g is computed using linear extrapolation as 

r3 r2 
(2 - 69) 

Numerical experiments show that this produces results equally acceptable to those from an 
asym.ptotic approximation based on previously mentioned higher order terms proportional 
to S"(z )  when S"e(z) is known analytically. For tabular S(z) input, the linear form ( 2 - 6 9 )  
is preferred due to significant errors possible in obtaining S"e(z). 

This scheme was applied to treat incompressible flow over a parabolic arc of revolution 
body, in the free field and confined by solid walls. The normalized radius F which is given 
by 

F(z) = 2z(1 - z) (0 _< x .S 1) (2 - 70a) 

gives the cross sectional area, 
I 

scx) = , ~  = 4~z~(1 - 2~ + ~2) (2 - 70b) 

Thus 

Now, in the free field, 

S ' ( x ) = s = ( ~ - 3 z ~ + 2 x  a) (2-70~)  

I fo ~ s'(e) - s '( , )  S' (x )  1- 1 - ~ .]z 
g(=)  = 4 .  4 . . ( 1 -  ~) - -  %-] ,d~ , 

(2 - 71) 

which for (2 - 70a) specializes to 

I 44 3 ' I g(x) - 2z (1  - 3x  + 2 z 2 ) l n  4 x ( l  - x )  + -~-x - ' 2 2 x  2 4- 8x  - 

g'(x) = 2 (I - 6x 4- 6z 2) {3 - In4x(l - x)) + 6 ( i  - 6x 4- 6x 2) 

The corresponding confined solution is given in Ref. 37. 

(2 - 72a) 

( 2 -  72b) 

2.10.1 Results 

Figure 16 gives a comparison of VAX 11/780 application of the finite height code run 
in the free field to the exact solution represented by (2 ' 70a). The vertical (F) &,rid was 
developed with logarithmic clustering. The clustering parameter SA provides a uniform 
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2.1.2 Problem Q: 

1 1 

(K-c  + + + 

lira ~÷~ = S ' ( = )  r--,o 2"-'~- ' 0 < z < l  

~ ( z , 0 ) = 0  , z > l  

~.(=,H,s) = / . ( = , s ; H )  = - c . 1 2 6  = 

~(=, H, s) = / ( = ,  s; ~ )  

(2 - 5a) 

(2 -Sb)  

(2 - 5c) 

(2 - 5d) 

( 2 - ~ )  

Here, 5(z) ---- strenmwise area progteuion of the test article, 8 ( ~ )  ---- dimensional cross 
aectional area, ~ : dimensional coordinate m f~eatream di=cc~ica, mad S(z) - S ( ~ ) / ~ L  2, 
where L is the body length. Problem q above represents a generalization of those discussed 
in Ref. 29 because of the fully three-dimensional nature of the equation of motion (2 - 5a) 
and in accord with the previ.ons remarks, the more general nature of the external conditions. 
The latter are 8iron by either (2 - 5J)  or (2 - 5d~) 

2.1.3 Large H Theory 

The secondary expansions associated with H --* oo will now be considered. It is 
sntidpated that. the structure of the various layers, i.e., Axis, Central, and Wall layers 
show,~. ;n Fig. 2, will resemble those for solid walls. Accordingly, these repre~...,tations are: 

2.1.4 Omtral Layer 

= ~0(z, P) + PII=(H)~xI=(Z, r ,  S) + Pl (H)~t  (=, P, S) + . . .  

K = K;  + ~:(H)K~ + . - .  

A = .4o + ~1(H).% + . . .  

which hold in the central limit 

(2 - 6a) 

(2 -6b)  

(2 - 6c) 

z,~ fixed as H .-* oo 

These lead to the following generalized hierarchy of appro~mate equations: 

2.1.5 

2.1.6 

Free Field Approximation 

1 
(K~ - (7 ,-I- 1)~o,,,)~o,,,, + ~(F~,,),~ = 0 

Variational Equations 

(2 - 7a) 
J 

1 1 
( x ;  - (~ + 1)~o.)÷~12.. - (.y + 1)~.~,12..  + ~(~÷,/2,),  + ~-~ , / , , ,  = o ( 2 -  7~) 
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(K~ - (7 -I'- 1)~,,)@1.o - ('T + 1)@x.~o.. -I- ~ (~@l,)e + = (2 - 7c) 

where u~(H) = p~(H) to keep the forcing term in (2-7c) ,  and to address the possibility of 
adjusting K~ as a Math number correction to achieve interference-free flow. The significant 
complication of Eqs. (2 - 7t)) and (2 - 7c) over their solid wall counterparts is the presence 
of the terms involving 0 derivatives. On the other hand, a substantial simplification from 
the Problem Q is the allowability of factorization and superposition due to the linearity of 
these equations. As will be seen, the angular dependence of the far fields for these problems 
involve simple factors such as cos 0, cos 20, etc. It is envisioned that this dependence can be 
factored out, e.g., by allowing ~bl = ~z(z, ~)cos 0, which gives a two-dimensional equation 
for ~1. Also to be confirmed by matching is the assertion that the far field for ~0 has a 
similar structure to that given in Ref. 29. 

2.1.7 Wall Layer 

The appropriate representation is assumed to be 

= e0(a)~0(x~,rt ,S) + e, /2(S)~l/2 + e,~,~ + " "  , (2 - 8a) 

for the wall layer limit, 

z t  = z / H  , rt = ~/H , f ixedasH- -*oo  (2 -8b )  

Substitution of (2 - 8a) into the KG formulation gives 

O(eo)" L[~o] = 0  (2 - 9a) 

where 

o(~,/,) : L[~,/,] 

o b , , e o / a )  : z [ ~ , ]  = (C~ + 1)~o., - K 0 ~ o . , . ,  , 

(2 - 9b) 

(2 - 9c) 

1 0  ( ~ t )  1 0 2  , 0 A~ , AT-- +r t '  L - K ~ +  ;t~t ~t _ 

2.1.8 Behavior of ?0 near Orisin 

j(.). As in the solid wall case, if R t = KT + ~2/H, the source-like behavior, 

S(1){ 1 } 
~ao ~- " ~  -41rR'--"t + " "  

( 2 -  I0) 

is anticipated. 

From (2 - 5d'), the similarity form, 

1 
f ( z ,O;H)  = -H:f(zt,o) (2-11)  
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is appropriate, and leads to the boundary conditions 

~o(zt ,  1,0) = f(zt ,O) = f(z',O + 27r) (2 - 12a) 

If 

Then ( 2 -  10) implies 

~Pl/2,1 ( xt, 1, O) = 0 

/~t= 0"-~-+ 1 0 ( ~ - - ~ )  1 02 
o~t ~'/~-~ ~' + ~t-' o~ 

x t  = , t / v ~ o *  

S(1) ,., t'/~+(rt) 
At'c° = ~ o  °ix J 2-"~'~rP 

With the following exponential FourieT transform pair 

(2 -  12b) 

(2-  13) 

~s = / L  e-ikxt~°°dXt 

~O0 = ~ fez eikXl~odk 
21r J_.. 

the boundary value problem for ~o corresponding to (2 - 10), (2 - 12a) and (2 - 13) is 

.r..Vo = (Z~tT - k 2) ~0 = o  (2-14a) 

lira r 'd~° I S(1) (2-  14b) 
, ,-~ 7if, - f~ ~rk~ 

~0(1,0) = leO, k) = 7(0 + 2~r,k) . ( 2 -  14c) 

In contrast to the solid wall case, the decomposition of the solution into the fundamental 
solution M0 and a part Mz that is bounded at X = 4-0o as indicated in Eqs. (12) of 
Ref. 29 is not required since with the Dirichlet conditions, there can be mass flow through 
the interface to eliminate the solid wall source flow division at upstream and downstream 
infinity. The eigenfunction expansion solving (2 - 14) is 

s o  

¢-o = AoKoCk,'') + BoIo(k,'') + ~ x,.Ck,."){B,, cosns + c~sin.s} 
n--=,~l 

, (2 -  15) 

where Ks and In are Bessel functions, the periodicity condition in (2 - 14c) has been used 
to determine the eigenvalues ~n = n, n = 0,1,2, . . . ,  and (2 - 14b) has been utilized to 
eliminate the Kn for n > O. 

10 
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Application of (2 - 14c) and inversion gives finally, 

1 
(Po = ~'{ ~o ~ cos kXtdkf], ~ V ~  [ Xo-~K°(/¢)[/°(kri) - K°(krt)] 

Zo(~r*) 2,, k)dO} 
+ fo 7(o, 

2 ~ f 0 ° °  "/-( krT ) r 2. 
c o s l c X V - - d k  1 7(O~,Ic) cosn(O- O')dO ' 

+ ~  ffi z,(~) .Io 

( 2 -  16) 

The integrals in (2 - 16) are convergent since the Bessel ratios decay exponentially as 
k --* oo and are analytic as k --. 0. 

As indicated previously, for the analysis in this section, the 0 variation will be sup- 
pressed. This may be realistic for many practical applications for nearly circular test sec- 
tions and interfaces in the intermediate region of slender body theory discussed in Ref. 30. 
For conx'enience, the f distribution has been assumed symmetric in X, i.e., f (X)  - f ( - X ) ,  
to c.b'.ain (2 - 16).* Therein, the exponential transforms have been expressed in terms 
of cosine integrals. The analysis can be readily generalized to handle unsymmetrical f 
distributions. 

2.1.9 Asymptotic Representation of (2 - 16) as R t --* 0 

To obtain the required representation, the following integrals are considered: 

fo ~ I°(krt),n, [2=7t~ k)dO I1 = cos kxt  10(k) - 'J0  " ' - '  

_ z.K "'Jo 

(2 - 17a) 

( 2 -  17b) 

( 2 -  zT~) 

Consistent with the assumption of axisymmetric interface pressures, Ia will not be consid- 
ered here. By approximating Io(kr 1) and coskX# as R t --, 0, and term by term integration 
of the series obtained, the following approximation for ~o0 results: 

~00 ---- 
s(1) 

4~rv/-~.Rt + (.A0 -I- B0) + (Co + :D0) RPP2(cosw) 

+ o  ( . " )  
(2 - 18a) 

* This restriction will be removed in Section 2.2. 

11 
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where 

_ S ( 1 )  [ Ko(k)dk 
v / ~ / o  °° zo(k) .40 

B0=lfo°° d/¢ fo °° x0Ck) l(xt) cos tXtdX 

Co= 1~°°kad1¢~ °° - ~ [o(k) I ( x  ~) co., k:(*dX* 

_ -so)  
:Do 2~r2 V/,-~ f 0 ° ° / ~ k )  dk 

( 2 -  18b) 

( 2 -  18c) 

( 2 -  18d) 

( 2 -  18e) 

Here, w is the scaled analogue of the polar angle defined in Fig. 2 i.e., w = cns -1 Xt/Rt 
and P2(cosw) is a Legendre polynomial. 

The ccnstants given in (2 - 18b)-(2 - 18e) are all given by convergent inte~als. In 
particular,/~o converges if 7Ok) is bounded as Ikl - ,  co, and e ~ n  under milder conditions 
on 7. This results from the potent exponential decay of I0. No problem is encountered as 
k --. 0 since the mtegrand ,s analytic at that point. 

The terms involving B0 and Co give the effect of the pressure boundary condition. 

2.1.10 Matching 

For purposes of matching, the following asymptotic approximations for the wall layer 
and central region axe appropriate: 

@c~tr f f i , - z+6 '  - - +  ~ + N ( c o s 3 w - c o s w ) +  V/-~R,'P~Ccosto) 

+ Ux/2(H)~i/2 + m (a0a2P2(cos~) + aiRcos~, + a2) +... 
as j1~ --# OO 

(2-  lg) 

f s(1) r 1 1/ = , + e  4 -R, 
J ~  

{ [ ,  oo] co } +~ c ~-g +co+ +~-(cos~-co~o) 

+ ' . "  , as Rt  ~ 0  
( 2 -  20) 

where Ao, Bo, Co, and A are constants that have been previously defined in Ref. 29 with 
(~+I)s2(I) a corrected value for Co being 1087aK~11 • 

12 
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Preliminary matching considerations govern the selection of the various elements com- 
prising (2 - 19) and (2 - 20). The 41 coefficient of ~i represents a harmonic solution of 
(2 - ?c). The response to the nonlinear forcing terms (~ + 1)¢0.~1.. and (1, + 1)~l .~0n 
are decaying terms as R --* oo that  are higher order to the order of the matching and can 
be neglected. Regarding ( 2 -  20), ~01/~ and ~ol, the coefficients of el/2 and el, respectively, 
consist partially of X t derivatives of ~o0~ such that  the multipole expansion has. primary 
singularities which are source, doublet, and quadrupole forms with their appropriate re- 
flections. Thus, the reflection of the doublet is an X derivative of the sources, and the 
quadrupole has the same relationship to the doublet. 

For matching Eqs. (2 - 19) and (2 - 20) are written in the intermediate variable 

R 
R~ -- - -  (2 - 21) 

which is held fixed as / / - -+  co. The gauge function r/is an order class intermediate between 
1 a n d / t  a s / / - -~  co. This is expressed symbolically as 

1 < <  ~(H) < <  H ( 2 -  22) 

Thus, ~ --+ 0 as H --* co, and ~ --* 0 as H --* co. For axial symmetry of the interface 
.,ressures, the matching process is almost identical to that discussed in Ref. 29. The only 
difference win be the redefinition of certain constants associated with the streamwise inte- 
grals of the specified pressure data  as well as the switchback terms. For understanding of 
basic issues related to the extension to non-axisymmetric interface pressures, the matching 
is diagrammed in Fig. 3. 

Referring to the figure, the various labeled terms denoted by the circles give the 
following matchings: 

s l  = ~  

@,.., Q 

®,- ,  ® , 

@ "' ® . 

As will be seen in the next section, the non-axially symmetric case requires additional 
terms in the wall, central, and axis layers to deal with the effect of the higher harmonies. 

13 
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~,,,.,.t._...j.1 : -,. + 62~ . , , . i t  : :r. + 6 .= 
U 

I I ~ iO l i l  

® ® ® ® 
A = - , , +  - + .-3--~" + 

U p._. tZ z{ .  I~ ~ _ - ~  

• (." ') , I ,  +, ' . ' , (~1 [ °  

t 

Co 

Fig. 3. Matching of central and wall regions for axially symmetric interface pressures. 
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The matching of the central layer and the axis layer proceeds along similar lines to 
that given in ROf. 29. All that is required is the essential result for the boundary condition, 
which is 

qble(z,0) = 0 (2 - 23) 

The expression for the interference pressure remains the same as that given in Ref. 29. 
However, there is an implicit dependence on the interface pressure data through the far 
field influence of the terms involving the constants B0 and C0 defined in (2 - 18c) and 
(2 - 18d). Also, the flux of streamwise momentum of the interference field through the 
interface must be considered in the calculat~or, of the interference drag. The implicit 
dependence on the interface pressure data is s'.mwn in the following altered problem P1 
denoted P2 for the interference potential in the central region ~bl. 

P2." 

1 
[K~  - ('3' -I- 1)~o,,] ~bl.. - ("y -4- 1)~bo. ~bl,, -I- ~ (r~l~,)e = -K~'~bo..  (2  - 24a)  

= 0 

-- ooR2P2(cos ) + alRcos  + a2 as  R - *  oo 

(2 - 24b) 

( 2 -  24c) 

where 

ao - Co + 2)0 (2 - 24d) 

"'1 = Boo~o (2 - 24e) 

8vrb0A = evoC (2 - 24f) 
O 2  --= 

For the free jet case, Co = 0 in (2 - 24d) and 80 = 0 in Fig. 3. Solid wall conditions are 
mode led  by  m a k i n g  ao = ~ - b o S ( 1 ) / V / - ~ ,  w i t h  o~ 1 = 8~'Bobo, w i t h  bo = .063409*.  

2.1.11 Discussion 

Because of the relationship of PI  to P2, the computational algorithm which has been 
developed for the solid wall case can be used to solve P2 with corrections of the indicated 
constants and the post-processing subroutine DRAGI to account for the flux of streamwise 
momentum tlLrou~ the interface. Note here that the effect of a2 in (2 - 24c) can be 
neglected. 

* The determination of this value is discussed in Section 2.12. 

15 
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2.2 Generalization to Anbmlar and Unsymmetrical Variations 

S~mmary 

In this section, the pressure boundary condition asymptotic analysis given in Sec- 
tion 2.1 is extended to handle angular interface and unsymmetrical variations of measured 
pressure. 

Central Layer 

With the generalized angular variation at the interface, ('2 - 6a) i~ anticipated to be 
modified as 

4, = ~,o(=,e)+~,,/ ,(H),~,/=(=.,~, o)+~, , / , (H)~, , / ,  (=,,~, o)+, . , (H)~, ,  (=,~,0) + . . .  (2 - 25) 

As compared to (2-6a), (2-25) contains an extra term (indicated by 3/4 subscripts). This 
insertion is required by matching considerations associated with the more general class of 
inte.-f_~_~ pressure distributions involving angular and asymmetric streamwise variations. 

The analysis and results are such that Eqs. (2 - 3) to (2 - 6) remain unchanged. 
Reflecting the more general interface distribution the expression for ~0 becomes 

S(1) (Qz-(~=)  "1- Q0 1 =o (2 - 26a) 

w h e r e  

xoCk) 
( 2 -  26b) 

02 --" / ~  I£'0 (J~r t) e ikxt d~. (2 - 26c) 

.r,, (k,.t) r " _  
,= '  - - ,dkjo f(o,k) o .OdO (2-  28d) 

pn = / ~  e ikxt In (krt) /0 2g z,,(k) dk 7(0, ~)sin.OdO (2 - 26e) 

Upon expanding the integrands in (2 - 26) for small R, and with considerable algebraic 
manipulation, the asymptotic expansions of the integrals can be obtained. The methodol- 
ogy exemplified in Ref. 29 involves expansion of the Bessel functions for sm-11 r t and the 
e ikxt kernel for small X t and gives a series that can be integrated term by term. These 
integrals are convergent for the ray llmits (R t --+ 0, 8 fixed) of interest. 

16 
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Collecting results, the desired expansion of ~o is 

.4oo 
~o = -~" + Ao + Bo + Ao~X t 

Jr EorT cos O -b ~'or? sin O + Xt  ( £ol rt cos O + .~ol rf sin OI " 
~ | ~  ' ~ 'I (2-27a)  z \ Xty  X t ,  / 

~or t cos 2 ~  + y 0 r  P_sin 20 

l / ~ - - z =  y z  

(Co + Vo) Rt'p2(co~) +- . .  

where the terms shown under those in ( 2 -  27a) are listed to indicate their correspondence 
with spherical hermonics and the spherical coordinates are as shown in Fig. 4. 

SCS0443 

Y 

Z 
R 

X + 

Fig. 4. Spherical coordinates. 

From the asymptotic expansions, the constants in (2 - 27a) are: 

s(~) 
.400 = 4~V/- ~ -  

S(~) K0(k) ~ oo 

,,o- ~ . . ~ / o  ~ ~ . ~  , ~o-- ~/_~,o~) ~'/o ''~°,'~" 
.4o, = ~ x-~) 7i(o, k)dk 

(2 - 27b) 

(2 - 27c) 

(2 - 27d) 

17 
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(2 -27e)  

l'~'- Re 2* T cos OdO / 2  fe 2¢ T sin OdO f.ol 4~r2 i / 2  kadkI--~) fo -~o1= -~2Re i k2dk 
= ' I - ~  

(2 - 27f) 

S(1) fo°° lc2Ko(k)dk 1 f 2  k'dk " 2 "  / ~'dO ( 2 -  27g) 
JO 

'' /2  I'" Oo = Re ~ 7 cos 20d0 , ~ = - 4'n"21 Re ~,,Ck )''/'-'~'~ 7 sin 20dO 
( 2 -  27h) 

Matching 

Using the intermediate limit described in Section 2.1.10, matching of the central and 
wall regions is schematically indicated in Fig. 5 in which both representations axe written 
in terms of the intermediate variable R n defined in Section 2.1.10. It should be noted that 
nonlinear effects axe associated with Poisson equation forcing terms such as ~z,.q~o.. in 
(2 - ?e). The Poisson form is associated with R ~ oo ray limit of the central region flow. 
In Fig. 4, f/O) is a particular solution of the equation 

1 s m  + = c o s  , , ,  
sin~ 

(2 - 28~) 

and f/(2) is the solution of 

d . dn¢2)~ nO2) nPs(cos~) + 2Pi(~) 
sinw " ~ )  sin2""~ 5 

(2 - 28b) 

As indicated in Section 2.1.10, the matching of the central and axis layers proceeds 
along similar lines to that discussed in Ref. 29. 

All that is required is the essential result for the boundary condition, which is 

~1,(x,0)=0 

The expression for the interference pressure remains the same as that given in Ref. 29. 
However, there is an implicit dependence on the interface pressure data through the fax 
field influence of the terms involving the constants defined in (2 - 27c) to (2 - 27h). Also, 
the flux of streamwise momentum of the interference field through the interface must be 
considered in the calculation of the interference drag. The implicit dependence on the 
interface pressure data is shown in the following altered problem P1 denoted P2 for the 
interference potential in the central region ~b,. 

18 
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Fig. 5. General case of matching oi" central region and wall layers. 
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P2." 

1 (~bz,), -K~'$o.. [Kff - (q' + 1)~o,] $z, ,  - (" /+ 1)$o,$1= + ~  = (2 - 2 9 a )  

= o  

~z "" R2 t~P2(c°s~) + I 

+ R  ~ ' l c o s w + s i n w  ~-'~'~sin0+.4--6cos0 

+,A2 + " "  as R ~ e~ 

where by Fig. 5, with B and C defined in ReL 29 

- 2 - - -  

• ,4,0 = Co + / ) o  

(2 - 29b) 

(2 - 29c) 

t 2 -  29d) 

2.2.1 Discussion 

m m 

.41 = (2 - 29e )  

~4"-~ = 2CC1 = 2B (Co + ~D0) (2 - 29f)  

• As  - -  ~ o  ( 2  - 2 9 g )  

~44 = 7~0 (2 - 29h) 

.As = ,7"oz (2 - 29i) 

.A6 -- 601 (2 - 29j) 

The problem (2 - 29a)-(2 - 29c) is the generalization of the Problem P2 given in Sec- 
tion 2.1.10 accounting for asymmetric8 in the atreamtoise diJtribution of the interface pres- 
sures as well as angular 0 variations. These effects are given by the terms marked as (~) 
- (~) in (2 - 29c). They represent averages of the early harmonics which to this order is 
all that the far field is sensitive to. The specialization to the free jet case is obtained by 
setting ~D0 = g0 = ~/0 = g0z = ~'01 = 0 in Eqs. (2 - 29). 

2.3 Shock Jump Conditions 

An important  element to be considered in the numerical solution of the Problem P1 
referred to in the previous sections is the satisfaction of the shock jump conditions. For 
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the free field case, these relations are satisfied by the divergence or conservation form 
of the Karman Guderley small disturbance equation. These give the Rankine Hugoniot 
jump conditions. They are satisfied using type sensitive shock capturing schemes such as 
those originally developed by Murman and Cole in Ref. 31. On the other hand, the wall 
interference corrections related to the Problem P1 have to be satisfied by use of explicit 
rel~tions. These have been derived for the high aspect ratio transonic lifting line theory 
fo, mulated in Ref. 32. These relations will be derived for axisymmetric .qow in this section. 

Referring to Fig. 6, conditions across the shock front denoted as S will be discussed. 
'~b.iL, Purface is give~ by 

s = = -  g (~ )  = o , (2  - so )  

where ~ = 6r, and consistent with the Problem PI delineated in Ref. 29, axial symmetry is 
assumed. The Problem P1 describes the wall interference flow away from the walls on the 
~xis of symmetry of a cylindrical test section. The velocity potential in this zone, denotcd 
by ,~, is given by the asymptotic expansion scs4.zsscz 

r 

U 

X ---- f , , f  SHOCK 

w 

X 

h 
X 

SHOCK SURFACE~ 

Fig. 6. Orientation of shock surfaces. 

= x + ~b0(x,~) + ~ + ~-~b1(z,~) -I-..- , (2 - 31) 

where U is *.he freestream speed, the ~i are perturbation potentials, a~ is a constant, H is 
the wall height in units of the body length, and 6 is the confined body's thickness ratio. 
The secondary expansion in the braces in (2 - 31) is an approximation for the perturbs. 
tion potential ~$ which is governed by the Karman Guderley transonic small disturbance 
equation (2  - 5a), with a assumed zero. 

Equation (2 - 5a) can be written in the divergence form, 

I l b~} 1 
z { ~ }  - -  / ~ ,  ~ + + e ( e ~ ) ~  = o (2 - s2) 
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where subscripts denote partial differentiation. Denoting the transverse velocity vector as 
= vl'~, (v = ~ ) ,  the ~ derivative term in (2 - 32) can be written as V .  ~, where V. is 

the cross flow divergence. 

The integral form of (2 - 32), applied to the infinitesimal thickness (= e) volume V 
shown in Fig. 6 is 

//v L{~b}2~'F dF d z = O  , 

and the d;vezsence theorem gives rise to the flux form 

/s { [K. ~+z 9. u~-]-I-[@]-~}2,FdF=O , (2 - s3) 

where I f ]  --- li'.n,.-,o{f(z,g + , ) -  f(z,g - e ) } ,  u = ~z, and ~ is a unit vector normal to S. 
Since (2 - 33) holds for an arbitrary area, the integrand must be zero, 

[ ] Ku "Y +2 lu2 + [ ~ ' 6 - 0  (2--34) 

Now 
v s  r -  6g'(F)i', 

- ~ I - ~ /z  + o (~=)  ' (2 - 35) 

where i' is the unit vector in the z direction and i'~ that in the F direction. Substituting 
into (2 - 34), this gives 

[Ku ~ + 1  ] .~ - g'[~] = o ( 2 -  34')  

By virtue of conservation of tangential momentum across the shock, the perturbation of 
the velocity vector ~ is normal to the shock surface. This perturbation velocity is given by 

~ ' -  U~ = 62ui.  + 6Sv]. ~ 
U 

On the basis of tangential momentum conservation, 

( ~ - u r )  x v s = o  , 

which giyes 
[v] - - [ u ] g ' ( F )  ( 2 - 3 5 )  

Eliminating g' from (2 - 34') using (2 - 35) gives 

[,,-,, <" 1>,,,] [,,] + = o (2 - 36) 
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Since tangential momentum is conserved, the tangential velocity component to the 
shock is continuous across it. Upon tangential integration, and disposing of an unessential 
constant, the following relation is obtained 

[4,] = o  ( 2 - 3 7 )  

Equations (2 - 36) and (2 - 37) lead upon substitution of the asymptotics into the jump 
relations for the approximate quantities appearing in (2 - 31). To obtain a determinate 
set of quantities, the shock's representation is assumed to be in the same form as that for 
~, i.e., 

1 1 
g -- go(, =) + -#g~/2(~) + -~g~ +'"  (2 - as) 

Denotine f as a quantity of interest which has the same asymptotic form as ~b. on the basis 
of (_9 - 38) .~d Taylor's expan~io., 

1 
fC=,g) =foC~,go) + ~(f~/~(=,go) + g~/~fo.C~,go)) 

g~12 1 + ~/o . . (z ,go)  + ~(fzCz, go) + glfo.(x, go)) 
(2 - so) 

By virtue of (2 - 39), substitution of the expansion (2 - 31) into (2 - 36) gives the approx- 
inmte shock relations which are: 

2 .o uo +[vo] n =0 (2-40.) 

["1] [Kuo ~' + luo2] + [uo] [ ( K - ( ' 7  + 1)uo)u,] 
( 

+ 2Iv0] [vii .{ [,.,o] [(,,,- ("," + :,.),,o),,..] 
I ,  (2 - ~ b )  

[Kno ~ + 1 2] - [.o.] + 
L 

+ 2[ 0] 1 
where u~ -- ~d, and vd -- ~i, where i is equal to 0,I. The quantity g112 can be shown to 
vanish on the basis of (2 - 37) which with (2 - 39) leads to the additional set of relations: 

O(1) : [~o] = 0 ( 2 - 4 1 a )  

o(z~ - ' )  : [~1] = - g l [ ¢ o . ]  ( 2 -4~b)  

It should be noted that the O(H -1 ), O(H -2) equations obtained in the process leading to 
Eqs. (2 - 40) are vacuous. 
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Equations (2 - 40) and a vorticity relationship to be derived in the next section 
complete the formulation necessary for the computational solution. 

2.4 Shock Conservation Laws for Wall Correction Flow 

In addition to the jump relations derived in Section 2.3, a useful conservation law 
can be derived for use in the numerical solutions. In analogy to the free field large aspect 
ratio case discussed in Ref. 32, this law will be obtained using the divergence theorem. 
Considering the region shown in Fig. 7, the divergence form of (2 - 7c) (with ~ = 0 and 
dropping the stars on the K's) is 

1 
{K,~bo. -t- Ko¢, .  - ( 3 '  -I- 1)~o.@,.}. + ~(~bl , ) ,  = 0 , 

o r  

9 .  (Kl~bo. + K0~bl. - ('v + 1)~bo.~bl.,Ko~,,) = 0 , (2 - 42) 

where V. refers to the divergence operator in the z, ~ coordinate system in which ~ -- V~0r.  
From (2 - 42), 

/ / s (g ,¢o .  - ,,*l.,KoC,,,) " "dS , 

where w - (3' + 1)¢0, - / t o ,  S represents the surface of revolution consisting of the sphere 
SR, R = R0, the cut SB around f = 0, So around the shock or shocks, and ~ is the unit 
normal to the shock surface. 

Now, since ~I,,(Z, O) " -  O, 

. 

where I'~ is the unit vector in the g direction. Also, f fs~ can be shown to vanish to the 
order of approximation considered by virtue of Eq. (20b) in Ref. 29. l~rom the previous 
section, with the first approximation of the shock shape given by 

x = ao(~ )  

where [ 

[¢o,] _~g(~)  
~-~-~ - 

] denotes the jump of the indicated quantity across the shocks and 

r- G~C~)L 

~/1 + G~(O ' 

the desired conservation law is 

/,o - } [~o.] d~ = o , ( 2 -  4s )  
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Fig. 7. Regions appropriate to shock conservation laws. 
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where So is the shock surface. 

2.5 Re~$ularization of the Problem for the Correction Potential @I 
To avoid the singularity at oo, the problem P1 in Ref. 29 is transformed by subtracting 

oil the far field for ~1. Accordingly, the variable @1 is introduced in p1, where 

~1 = ~bl - ~bFF (2 - 44) 

Here, 

1 M[~bl] ~ (Ko-("f-I- 1)@o=)~i=.-('7 Jr 1)~bo==@i= ~ ~(e~b1,,)e =-KI~o,,. (2 - 45a) 

and 
.Hr~m ° ~ba, = 0 (2 - 45b) 

Noting that (for solid walls) 

~1 ~-- ~ F F = bloR2 P2( cosw ) ~- 87rb0BoRcosw (2 - 45c) 

aS  

and 

where 

/01 £ / ~ 
J0 

w = polar angle defined in Pig. 1 

S(x) = model cross sectional area 

R ffi polar radius defined in Fig. 1 

From ( 2 - 4 4 )  and ( 2 - 4 6 ) ,  ( 2 - 4 5 a )  and ( 2 - 4 5 b )  become 

(2 -46) 

/ r2 oxS  B0  } 
= Ko +~0.. (7+z) \Ko + ~ o / - K 1  

~ 1 ,  =o 

(2 -- 47a) 

(2 -47b)  

(2 -47c) 
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N 

where R ffi 6R. 

The slender body interference code will use the regularized form represented by Equa- 
tions (2 - 47). 

2.6 Basic Code Modules 

Figures 8 show flow cha~,s which give an overview of the interaction of the functional 
modules to be used in the design of the wall interference code under ~ 1.0. The 
preprocessor ATF sets up the grid and inputs other parameters through the subroutines 
INITIA, INPUT. The input geometry data is read in from the disk file. The solver STINT25 
has primary subprograms de~zoted as RELAX1, OUTFNL, SONIC, DRAG1 used to solve 
the zeroth order flow problem and RELAXVI, OUTFNL1, and DRAG1 for the variational 
problem for ~I. RELAX1 and RELAXV1 are modules which respectively are the principal 
successive line overrelaxation routines which serve the purpose of solving the tridingonal 
system for the free field and the interference problems. The tridingonal solver is denoted as 
TRID. RELAX1 and RELAXV1 include special treatment of far field, internal, boundary, 
and shock points with appropriate type sensitive switches. SONIC determines subsonic 
and supersonic zones, and OUTFNL and OUTFNL1 provide the basic flow and interference 
pressure fields as well as the quantities gi defined in Ref. 29 necessary to compute free field 
and interference drags. These are computed in DRAG and DRAG1, respectively. The 
relationship of the flow solving modules is shown in Figs. 8. 

2.7 Upstream and Downstream Far Fields 

For slender test articles that are sting mounted inside solid walls, the flow at great 
distances from the model behaves as a confined source in accord with the analyses given in 
the previous sections. Referring to the cylindrical coordinate system indicated in Fig. 9, 
far field behaviors were worked out in certain "ray limits" in which if R -- ~ r ~ and 
cosw  - z / R ,  R ~ 0 for 0 fixed. The case w - 0, or f ,  i.e., z --* ~oo however is degenerate 
and requires special treatment and had not been analyzed. 

For a properly posed numerical simulation of the finite height case, the structure of 
this flow must be properly modeled. This can be achieved using the Divergence Theorem. 

If z is the usual dimensionlees coordinate in the freestream direction depicted in Fig. 9, 
then the transonic small disturbance formulation gives the following equation of motion 

1 ('7-1-1) 
- ¢ , x x  + = (9. _ 4 s )  

where K -- (1 -M~oo)/62, M~ - freestream Mach number, ~ is the perturbation potential, 
and X = z / V r K .  The slender body boundary condition is 

~ o r ~  _ .  .0~ S'(~)~ , ( 2 - 4 9 )  

where 8(z) is the cross sectional area distribution for 0 _< z _< I, and S*(z) is without 
great loss of generality assumed zero for 1 <_ z _< co, (constant diameter sting). 
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I ATFIX.O~I 
/ HT PAR.OAT / 

C ~  / INPUTAND / ICONTnO, FILES / 
I ( ' ~  T, I. l 
I GRID C 
iPARAETERS)I 

t 

INiTIA 

GY GRID 
(SET UP 
rGRID) 

GX GRID 
{SET UP 
X GRID) 

Fig. 8. Flow chart for preprocessor and solver. 
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I 8OUNP. DAT 
ATFBOPT. DAT 

ATFBOPTV. DAT 
x, T VECTORS~ DX,GAMMt, GAM, 
PI, IMAX, JMAX, PHI, PLS, SBODY, 

PLSI, TAU, ETC. 

8TINT2S 
MAiN DRIVER 

t 
I RELAXI, RELAXV1 I (SOLVE DIFFERENCE 

E(~) FOR 0 th AND 
PERTURBATION FLOW 

COMPUTE 
COEFFK~ENT8 

8C-mN.OS 

Fig. 8. Flow chart for preprocessor and solver (continued). N in ~,he notation STINTN denotes 
the Nth version of the main driver. 
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Fig. 8. Flow chart for preprocessor and solver (concluded). 
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A control cylinder is considered consisting of the walls (SH), an internal surface bound- 
ing the model near the axis, (S,), and the inflow and outflow faces (S-oo) and Soo, respec- 
tively, Accounting for the impermeability of the walls expressed as 

~_H= 0 (2 - 50) 

the divp.rg~mce theorem when applied to (2 - 48) gives 

L 2 ~  ~)X • 
(2-51) 

where V denotes the volume of the control cylinder. Evaluating the terms in (2 - 51), 

d°Jo = 

(2 - 52) 

From (2 - 50~, 

~s. O~ [ dS = O ( 2 -  53) 
~----H 

For a slender configuration, we assert that as in the subsonic case, the lift effect produces 
a ~'!~eg'tz plane (z = co) flow component that can be represented as an infinitesimal span 
voz.tex pair reBected in the walls. This pair is the Trefftz plane projection of the trailing 
vortex system from the body. Superpmed on this flow is an outflow due to the source 
effect. A similar outflow occurs at z = -oo. Accordingly, we are led to t.he asymptotic 
inflow and outflow conditions 

(2 - 54a) 

~cos8) 
~- - -CFFz as z --, - c o  , (2 -- 54b) 

where f(~,  ~) is related to the lift, and the constant factor CFI~ appears in the manner 
indicated in order to preserve the anticipated symmetry of the apparent source flow from 
the sting-mounted, fm~te base area model. In this connection, it is important to note that 
Eqs. (2 - 54) are exact solutions to the nonlinear small disturbance equation (2 - 48). This 
is true even for f(~, ~), since it satisfies cross flow Laplace's equation. It should be noted 
that the inflow and outflow conditicms to be specified at z - -~-co are independent of the 
form of f .  

Prom (2 - 54), it is clear then that 

/ /S~+S_ ~ ds= 2~rcFFH2 
o" 

(2 - 55) 
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s_o. / / 
J 

\ 
J 

/ 

s H 

H 

soo 

Fig. 9. Model confined by solid cylindrical walls and control volume, 

The last term to be evaluated in (2 - 51) is the right hand side, which is 

21r ed~ 2v:-K OX 2v/- ~ ~ {.q~,(co, ~) - ~,~(-co, ~)} d~ 

which vanishes by virtue of (2 - 54), as a milder condition of symmetry of the axial 
component of the far upstream and downstream flow. From this, as well as (2 - 51) 
to (2 - 55), it follows that the inflow and outflow conditions are, 

~ ,  ___ ± 2 S ~ 2  as z -* -'-co , (2 - 56) 

i.e., the apparent source strength is proportional to the body base area. Equation (2 - 56) 
is used in the numerical simulation of the flow field. 

A complete asymptotic expansion based on the eigenfunction expansion for a confined 
point source given in Ref. 29 can be used to obtain refinement of (2 - 56) and treat the 
transonic case. From Green's theorem and the properties of the Green's function G, the 
perturbation potential ~ in the confined incompressible solid wall circular cross section 
c a s e  is  

1 ~ol 1 Jo 1 e-A.lffi-(l Jo(Anr) d~ 
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where the summation is over the eigenvalues A. which zolve the foUowing secular equation 

JI( .H) = 0  

Thus, 
A,H = 3.8317 
A=H --- 10.1734 
AsH = 13.3237 

From these eigenvalues, it is clear that for moderate H, the confined flow decays much 
more rapidly upstream and downstream than the free field, with the former demonstrating 
exponential relaxation to the freestream and the latter, algebraic behavior. 

Based on these considerations, and extension to compressible flow which introduces 
a nonlinear volume source the expression for the asymptotic upstream and downstream 
behavior is 

/ J. /: } 2,r/'/'1 (4-.z :F 1)S(1)K -I- V 4- ('7+K1)a" a~a F oo ÷~,,dx 

+ TST as z ~ -]=0o 

(2 - 569 

where TST = exponentially small terms which are 

O(e - t 'P  I=1) as [z l~oo  

, /o I v = 

The last term in (2 - 56') represents the average kinetic energy of the horizontal pertur- 
batiou of the flow. 

2.8 Difference Equations for the Wall Interference Correction Potential 

A successive line overrelaxation (SLOR) algorithm for the large height correction 
potential has beetz coded. The initial approach is to use modifications of type sensi- 
tive switches developed by Murman and Cole sl, and pseudo--time operators devised by 
Jamesou ss as well as generalizations of the procedures developed in Ref. 34. Results to be 
discussed, for the full nonlinear finite height theory algorithm show good convergence for 
transonic Mach numbers. 

The basic code modules to treat this problem have been flow charted in Fig. 8. Prin- 
cipal modules are RELAX1 and RELAXV1 which are used to solve the discretized form 
of Eqs. (2 - 47) by nonlinear iteration and SLOR. Some highlights of our approach will 
now be outlined. 
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Applying the SLOR approach to Eqs. (2 - 47), the discretized form is 

}/(=,+,_=,_,) +~i - i ,~ \  x i - z i -1  z i - l - x i - 2  / 

and 

- ('Y + 1) (~°")iJ { ~+ -- ~i+--1 } z ,  - zi-i 

- \ r j + l  ( f j  - 'j'-'- r,_, ) ( ~ + -  ~+-1)}--RHSI, 
(2 - 57.) 

(RI'IS~J = 12('Y + 1)~°° 5° I / 2 b ° z  8~5°B°~ ) I  • " "K~" +~o,,,, (I'+ l)t'-'~-o + "~o  ' / - K ,  , (2-57b)  
ij 

(COEFo)ij (Ko - (7 + I)~o. )O (2 - 57c) 

0, for COEFo,j > 0 (subsonic flow) 
PO - I, for COEFo,j < 0 (supersonic flow) (2 - 57 ,0  

Here, (RHS)Ij is the discretization of the forcing terms in (2 - 47a), ~ is a relaxation 
parameter chosen such that 1 < w < 2, the plus superscripts signify current values, the 
quantities without plus subscripts denote values from the previous sweep through the flow 
field, quantities with i subscript only, have j suppressed, and j subscripted entities have 
i suppressed. The structure of (2 - 57) is similar to that for the free field dominant and 
finite height (fully nonlinear) problems with the following exceptions: 

1) For the nonlinear problems, a factor analagous to COEF0, COEF appears, involv- 
in K the actual dependent variables rather than a known quantity, giving a nonlinear 
difference equation rather than the linear form (2 - 11). 

2) Eq. (2 - 57a) contains a first order linear contribution and a right hand side (RHS)ij 
absent in t.he nonlinear free field and finite H problem. 

3) Artificial damping has been used for the nonlinear problem but may not be required 
for the linear one. 

4) (COEF)o by its nature is frozen in pseudo-time, whereas COEF is constantly being 
updated using time linearization with ~z given by its value at the previous sweep 
(time level). 

5) Additional boundaries associated with the zero tl~ order shocks are required in the 
problem across which the perturbation sho~k conditions need to be satisfied. 
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Note, for bodies with pointed tails, Eq. (2 - 87b) specializes to 

(RHS)ij - 8~rb0Bo(7 + 1) (~b0..)ii (2 - 5 7 ~ )  

The tridiagonal system for ~j is then 

Bs~.~-~ + D~ + A~@+I = C~ , j = 2,3,...,JMAX- 1 (2 - 5 8 . )  

Dj=_2{(I_p,j)(COEFo~ ( 1 1 ) 
~, ~ / ~ ~+~- + ~ i  Z i  - -  Z i - I  

- ~i-I'j (COEF°)i-I'J (xi -lxi-1 + Xi-l-- ! ~%l } / (xi+l - z'-1) ( 2 -  58b) 

( '7 - t "  1 ) ( ~ o . . ) q  _ 1 ~j+l +~j Fi+Fj-l} 
- x~ xi-1 ~i (~i+I - ~i-I) t ~+i  + Fi + r=i - :  -- r j - I  

B~ = ~ ( ~ + ~  =~i-~)  ~i -F~-~ 

1 (~j+_2z+~i) ( 2 -  BSd) A~ ffi ~J (6+, - ~-,) x ~ - ~ - ~  

C$ =-2{ (1-piJ)(COEFo)iJ( ~i+'-(1-w-1)~'-zi+, - z, (I - w-')~b' - ~+-1)z, - z,-, 

- ~ , - , a  ~ - z ~ _ ~  x ,_~-x ,_~  / - ( ~ + 1 ) ( ~ - ) ' i  ~-~-~ 

At the body, j = 2, and the previously indicated boundary condition, ~ ,  = 0 implies 

D, = Vl >' + 1 ( 2 -  50.) 
r2 r3 

B2 = 0 (2 - 59b) 

Also, A2 and Ca take their specialized values at F = r2 (with rl - 0). 

In (2 - 58) and (2 - 59), the plj are designed to provide the necessary type sensitive 
switching and implementation of Murman's shock point operator defined in Ref. 35. This 
behavior is essential not only for the zeroth order solution but the variational one as we]]. 

Subsequent sections will describe the scheme of shock fitting that interacts with the 
difference equations (2 - 58) and (2 - 59). 

2.9 Finite Heisht Application of Zeroth Order Code 

As indication of an application of the zeroth order part of STINT25 calculated by 
RELAX1, an equivalent body of revolution representative of a transonic/supersonic 
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blended wing fighter configuration was computed in a solid wall wind tunnel. The cross sec- 
tional area progression of the model is indicated in Fig. 10 which shows curvature changes 
associated with such geometrical features as wing-body intersections, canopies, and inlets. 
One purpose of this study was to explore aspects of the application of the code to realistic 
airplane geometries. 

0 . 1 2  x 105  - 

0 .9  x 104  

¢,. 

• - 04  
' '  0 . 6 x l  

X 

¢0 

0.3  x 104  

0 .0  I I ! ! I I 
- 2 0 0 .  0 2 0 0  4 0 0  6 0 0  8 0 0  1 0 0 0  

X (in.) 

Fig. 10. Area distribution of blended wing fighter configuration. 

As an indication of the flow environment for subsequent wall interference studies, 
Fig. 11 shows the pattern of isoMachs over the configuration associated with Fig. 10 in a 
free field at Moo = .95. These results could be practically obtained using the nonlinear 
analogue of the difference method associated with Eqs. (2 -57) - (2 -59)  on a VAX computer 
in a CPU limited Fast Batch or interactive environment. The grid utilized 194 points in 
the z direction with uniform spacing over the body and logarithmic stretching ahead 
and behind. In the F direction, a similar geometric progression spacing was used with 
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50 points. Nominal convergence* typically was achieved between 500 to 1500 sweeps, with 
more sweeps required at the higher transonic Mach numbers. 

0 
- 4 / 3  

2 / 1  5 

1 / 1 5  - 

I I 
- 2 1 3  0 2 / 3  4 / 3  

X 

Fig. 11. IsoMachs over blended wing configuration in free field, Moo - .95. 

The complexity of the flow structure evident in Fig. 11 is to be associated with the 
multiple inflection points of the area progression and the possibility for envelopes to form 
in the steeply inclined wave system. In Fig. 11, a shock is formed near about ] of the 
body length from such an envelope process. 

Figures 12 and 13 illustrate the Mach number and surface pressure distributions at 
the same freestream Mach number for the free field environment and a solid wall confined 
case. To obtain a nominal simulation of the free field, the upper computational boundary 
j - JMAX was placed at H -- 1.3 and homogeneous Dirichlet conditions were imposed 
there. Homogeneous Neumann inflow and outflow conditions at z -- 4-00 were also pre- 
scribed. For the solid wall simulation, H " 0.66 was utilized. Homogeneous Neumann 
conditions were used at j = JMAX and Eq. (2 - 9) applied at z = 4-00. 

* Defined as m a x  I<i<IMAX [ ~ -- ¢ij  [= 10 -5 .  
I ~_j~_JM AX 
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Fig. 12. Finite height solid wall interference effect at Moo = .95 on blended fighter con- 
figuration equivalent body D Mach number  distribution over body. 
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Fig. 13. Finite height solid wall interference effect, at M ~  -- .95 on blended fighter con- 
~gurat ion equivalent body m surface pressures. 
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From the figures and in accord with simple one--dimensional gasdynamic reasoning, 
the constrictive effect of the solid walls is to exaggerate the effect of stream tube area 
changes associated with body area changes. 

An experimental validation was performed of the 0th order solver RELAX1 based 
on one of the variable blockage ratio tests of a blunt nosed model (B-3) in the Langley 
8 and 16 foot tunnels, reported in Ref. 36. The test section was slotted and slatted as 
well as octagonal in shape. For such a blunt body which locally violates small disturbance 
theory, the agrcement with the data is surprisingly excellent as shown in Fig. 14. For this 
compta'i~on, the special improved accuracy boundary discretiz~tion proced,~re.described 
in thf. next section was used. The quality of the comparison is believed to be partially 
attributable to this improvement. 

?.In Iw.proved Accuracy Procedures for Numerical ~I~rentmeut of Body Boundary 
(~onditioris 

In the finite wall heig~at application of the code, the interference pressures are com- 
puted as the diference between the confined and free field pressures. The numerical trun- 
cation error is a larger percentage of this difference than of either of the former quantities. 
This fact puts a greater demand on numerical accuracy than has been stressed in state of 
the art codes. Accordingly, all error sources were evaluated. Some items considered within 
an incompressible and subsonic framework were: 

1. Accurate treatment of boundary conditions on axis of equivalent body. 

2. Proper application of upstream and downstream far fields. 

3. Need for double precision on shorter word length computers such as the VAX to handle 
high frequency errors propagating on fine grids for large iteration counts. 

4. Treatment of nose and tail singularities. 

The techniques apply directly to the transonic case. Moreover, study of subsonic flows 
is particularly useful because of the awdlability of closed form analytical solutions to check 
the numerics. 

The second of Figs. 8 shows the subroutine RELAX1, which solves the tridiagonal 
system representing a discretized approximation of the transonic small disturbance partial 
diferential equation of motion (TSDE) (2 - 5a). It contains a special procedure which 
deals with the boundary conditions. These are satisfied by incorporating the condition 
of flow tangency at the body into the discretization of the vertical perturbation velocity 
flux gradient. In the nonlinear difference equation for the free field flow (2 - 57k), this 
corresponds to an approximation fulfilling the role of the terms in the braces on the left 
hand side near the equivalent body of revolution (EBI~.) line of symmetry, (z axis). One 
scheme employed is associated with Eqs. (2 - 59a) and (2 - 59b). 

Figure 15 is a schematic representation of the nodes relevant to the boundary points. 
In the finite height case, this treatment is made more di~icult because the perturbation 
potential is logarithmically singular as the scaled radial coordinate tends to zero. Existing 
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Pig. 14. Validation of RELAX1 code against Couch experiment, B-3 body, M = .99. 
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field codes familiar to us do not properly deal with this singularity. Whereas this 
limitation may be of moderate consequence to the prediction of free and confined pressures, 
in accord with the previous remarks, it is absolutely crucial to the treatment of interference 
pressures and testing of the variational equation solver. Accordingly, attention was given to 
the development of a scheme that accounts for the singularity in the boundary treatment. 

j=3 
5 

m 

2 

2 

3 
2 

1 ; x  

O 

X 

0 

X 

0 

Fig. 15. Nodes in vicinity of axis. 

Referring to Fig. 15, the discretization of the third term, 

1 
T -- ~ (~b0,)e , (2 - 60) 

in the TSDE wil l  now be discussed. This is the vertical flux gradient previously indicated. 
Shown in the figure are the first 3 (j)  vertical node points as well as ½ node points. If 
~j, j  ffi 1 ,2 , . . . ,  J M A X  represent the j mesh points, 

r j+ l l s  = ( r j+ l  -I- r j )  /2 ,  (2 - 61) 

we consider (dropping the subscript zero on ~b and the tildes on r),  the disc/~etized version 
of T - Tj, given by 

T, = { l ( r • r ) r ) j .  ( 2 - 6 2 )  

Using the half node points in the vicinity of the z axis 

rs  r s I s  - r s l s  

42 



AEDC-TR-91-24 

The essential new idea is that a 'Sregularized" version ~ of the perturbation velocity po- 
tential ~b is introduced, where 

S'(z) inr  
= * -  2~ (2 - ~) 

St(z) = streamwise (z) derivative of the EBR area progressicm. 

The logarithmic sing-clarity is represented by the second term in (2 - 64). Numerical dJf.- 
ferentiation of ~ in the r direction is then accomplished by differentiating ~ as the arm= 
of a numerical approximation of its regular part and an analytical evaluation of the loge~ 
rithmically singular cor~ponent. The truncation error which would have normally become 
large due to the inKmty on the axis will be substantially reduced using the diffea~atiatlo=; 
of the linear polynomial representing the bounded quantity ~. 

In accm~i with these ideas, the terms in (2 - 63) can be evaluated as follows: 

( - } -(,. ,.) s'(=) (,'s + ~.=) - 
. , ' , )  ~ . _ . . ~  + 2 , , ( ~ ¥ ; = ) / 2  - ~" ~ 7, +-~-~-*  (,'.~.-)5/= - (,'a ~" ,'3 r2 

+ ~) { ~, _ ~ _ s,_~ ~ /~=  } s'(=) 
_ ~w + ( ~  ~ ~ - ~ 

s'(=) l, ~ , / ,~ ,  + ( r~ )s /=  ffi rs/= ~ s/= + 2~a/= J ffi a/= 

where the fact that 
s'(=) ]n~ + g(=) + . . .  

~ -  2--~- 
h a s  been used in (2 - 65b). Noting that rl  = 0, and collecting results, 

at j = 2, has in accord with (2 - 67), 

S2=0  
An = A~>21i=2 

D2 = Di>21i== 

Accordingly, the tridiagonal system discretizing TSDE 

j = 1 ,2 , . . . ,  J M A X  

1 

( 2  - 65") 

(2 - 6 5 b )  

( 2 - ~ )  

( 2 - e 7 )  

(2 - 68a) 
(2 - eSb) 

(2 - ~8~) 

(2 - 8Sd) 

4 3  



AEDC-TR-91-24 

In the computational implementation, g(=) is initialized as zero and then updated each 
iteration using ( 2 -  66). For ( 2 -  68d), g(z) is "time linearized" from the previous iteration 
without relaxation. As an additional refinement, it is useful to note that the three dots 
in (2 ~ 66)  __-- S"(=)~ ( r '  Inr r~,) 

in incompressible and subsonic Prandtl Gl~uert flow, and is an O($"~(z)r ' In' r) expression 
at transonic Mach numbers. The updated g is computed using linear extrapolation as 

rsr2 
(2 - 6 9 )  

Numerical experiments show tha t th i s  produces results equally acceptable to those from an 
asymptotic approximation based on previously mentioned higher order terms proportional 
to S"(z) when Sin(z) is known analytically. For tabular S(z) inl~ut, the linear form (2-69) 
is preferred due to significant errors possible in 6btaining S"'(=). 

This scheme was applied to treat incompressible flow over a parabolic arc of revolution 
body, in the free field and cofdlned by solid walls. The normalized radius F which is given 
by 

F(z) = 2x(l - =) (0 _< z < 1) (2 - 70a) 

gives the cross sectional area, 

S(z) = IrF' = 4~='(1 - 2z + =2) ( 2 -  70b) 

Thus 

Now, in the free field, 

s'(=) = 8~(~ - 3=' + 2=') (2 - 70c)  

S'(,) 1 1 ~ z  S'(~) - $"(=) 
~ ( 1  - x) 4,~ I=:  ~ .de , ( 2 -  71) 

which for (2 - 70a) specializes to 

I 
g(z) - 21(I - 31 -I- 2=')In 

4z(1 =) 
44 s 1 ( 2 -  72a) + -~-z  - 22z  2 + 81 - 

g'Cx) = 2 ( i  - 8x + 6~ ' )  {3 - In4=(I  - =) )  + 6 (I  - 6~ + 6~ 2) 

The corresponding confined solution is given in Ref. 37. 

( 2 -  72b) 

2.10.1 Results 

Figure 16 gives a comparison of VAX 11/780 application of the finite height code run 
in the free field to the exact solution represented by (2 - 70a). The vertical (~) grid was 
developed with logarithmic clustering. The clustering parameter SA provides a uniform 
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grid when SA = I and progressively greater clustering near the z axis with increasing 5A.  
For Fig. 16, 5~A --- 1.0001 (almost a uniform grid) was used to compute g. (The function 
gl(z) is an important term in the expression for surface pressures.) Reasonable agreement 
with the exact solution of Eq. (2 - 72a) is indicated with this grid selection as well as 
iterative convergence. 

Figure 17 demonstrates the effects of changing the clustering parameter SA to 1.1 and 
mesh convergence. Improved agreement with (2 - 72a) is demonstrated as well as good 
convergence ~'ith respect to the mesh size. In fact, it is clear that acceptable accuracy 
is obtained with sn ;ntermediate 100 × 50 (100 points in the z direction and 50 in the r 
direction) grid, as ~ompared to the fine 200 × 100 grid. 

i 

Taming to g~(z), Fig. 18 shows an iterative convergence study on the almost uniform 
vertical grid configuration considered in Fig. 16. Although excellent convergence (in the 
mean) to the exact solution (2 -- 72b) is indicated, oscillations are present. "1~o 1terns 
were investigated in connection with this phenomenon. One involves the relatively short 
word length ~,~ailab]e on the VAX and its interaction with roundoff propagation present 
in the successive line overrelaxation (SLOB.) method. If p indicates the achopping" error 
associated with this word length restriction, there is an adverse effect of mesh refinement. 
Letting 6z and ~r represent characteristic step sizes in the z and r direction, respectively, 
the roundoff error is O(p/6z6r)  as 6z, 6r -* O. Therefore, p was reduced by a double 
precision modification of the finite height code. Returning to BA - 1.1, Figs. 19 and 20 
indicate the benefits of this change, where the single precision oscillations of Fig. 19 are all 
but eliminated by the double precision algorithm as shown in Fig. 20. There is, however, a 
latent inaccuracy in the vicinity of the nose and tail stagnation points. From an asymptotic 
approximation of (2 - 71) in the vicinity of the nose, 

S'(x) ln' r 
gCz) " 2"--~ .2 [z + ~ 1 / =  

as z ,  r - *  O. (2  - 73)  

A similar formula with z replaced by 1 - z applies near the tail. The procedure asso- 
dated with Eqs. (2 - 67) and (2 - 68) must be modified to handle the special z "boundary 
layers" near z - 0 and 1. This not only involves subtracting off the associated logarith- 
mic singularities, but incorporating refinements in the interpolation procedure as well As 
mentioned previously, these improvements are important in obtaining an adequate predic- 
tion of the interference pressures. Computations of the latter without such measures are 
shown in Fig. 21 for a 100 x 50 grid. There, the streamwise distribution of the normalized 
interference pressure ACp with 

A(Tp (2 74) =--2Ag' , ) = (  ) t . . .1--(  

is plotted, where A signifies the difference between confined and free field distributions at 
a value of the reduced height parameter H (wall height in units of the body length) -~ 1.1, 
and 6 is the body thickness ratio. Although qualitative agreement with results of Ref. 37 
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are indicated, it is speculated that the mild oscillations shown in Fig. 20 near = = 0 and 1 
are aggravated by the interaction of the close solid walls and the logarithmic singularities 
at these points given by Eq. (2 - 73). 

2.11 Shock Fittin~ Scheme for Wall Interference Correction Potential 

In Section 2.9, runs were discussed of the finite wall height code option associated 
with a realistic compact blended wing fighter configuration. This code has been designed 
to incorporate the proper sourco-like inflow and cutflow boundary conditions associated 
with solid walls. In addition, dilference schc.mes were developed for the large height theory 
formulated as the problem P1 in Ref. 29. The variational equation solver uses a special 
procedure to treat shock jumps in the solution for the wall interference correction potenti~ 
@.. The shock polar relating these jumps to the streamwise and transverse derivatives of 
are given as Eqs. (2 - 40) and (2 -- t l~.  

Fi~ure 22 shows the relationship of the geometry of a typical shock structure arising 
in the @ prcblem and the grid. As one choice among various options, also considered in 
connection with the high aspect ratio code discussed in Section 3, the finite difference im- 
plemeutation will satisfy the shock relations across PO by surrounding it by the internal 
boundary condition carrying "notch" ABCD. The contour of this notch is composed of 
lines parallel to the ~ and = axes. It is presently felt that this selection provides substantial 
coding simplifications as compared to another option involving a curved internal boundary 
not parallel to the axes. A disadvantage of the notch scheme is that it can diffuse the shock 
somewhat beyond the few mesh points necessary to czpture it in the zeroth order approx- 
imation for the perturbation potential. However, this additional spreading is provisionally 
assumed to be small, since the cases of primary concern will involve almost normal shocks. 

Referring to Fig. 22, the strategy to be applied is to determine shock jumps in ~ at 
the various j levels [~]j - ~(NSPMA.X,j) - ~(NSPMIN, j) as a vector sequence 

hm = , (2 - 75) 
N'-*OO 

where Jn denotes the vector ([~]1, [~],, [~]s," " ' ,  [~)JSM^X) at the n th successive line over- 

relaxation (SLOR) sweep. The iterative sequence ( 2 -  75) is required since J is coupled to 
the solution field ~. 

In the implementation: J is the solution of a bidiagonal or tridingonal system which 
is solved by recursion. The coupling of ~ is nonlinear through the coefilcients appearing 
in the system. Accordingly, a linearization in pseudo-time involving the values of ~b at the 
n - 1 level has been coded. The new values of J are then used for the tridiagonal system 
along s = zi lines to update the j row vectors along ~i along z = zi on the next sweep. 
The process is iterated until convergence is obtained. 

Differencing the jump conditions (2 - 40) and (2 - 41) gives 

+ + + = 0 , (2 - 78a)  
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where ( ) signifies an average across the unperturbed shock, and 

.~ = < K - ( - F  + 1),,o> [,.o] ~ - [,,o]' 

bj - [K - (7  + 1)uo] [uo] 2 

= 2[°0] [.o] 

, . ,_ [,,o] 
LUOJ 

(2 - 76b) 

( 2 -  7s~) 

( 2 -  76,0 

(2 - 76e) 

Using the sbock uotch idea and assuming without loss of gencrality, a single shock is in the 
flow (£shtalls for Mach numbers near unity and choking may require special treatments), 
denote the points in the shock notch as: 

ZNSPMIN~ ZNSPMIN+I, ZNSPMIN+2~ " " " ~ ZNSPMAX (2 - 77) 

where ZNSPMIN < ZHj and ZNSPMAX ~ ZEj, and ZHj, zz j  denote the upstream and 
downstream locations about the shock at each j ,  or the last hyperbolic and frst  elliptic 
points, re.~pectiveiy. 

In more compact notation, let superscripts - and + denote the pre- and post-shock 
sides of the notch, respectively (NSPMIN and NSPMAX) and let s indicate the shock as 
well as [@l]j sitlnifY the jump of ~1 at j .  Then 

(,,,> _ ,,+. +,,L~ = ~ {,/,,.+, -,/,~. - [ ¢ , , ] = . + ,  _ =+ + 4,5 -,/, .-,  } = . _  _ =.-, (2- 7s) 

where the i and ] subscripts have been selectively suppressed. 

Substitution of Eq. (2 - 78) into Eq. (2 - 76) gives the following bidiagonal system 

[ ] noting that <'u,> -" <"1> -- C, where C = - ~  of equations for ~I J 

c# - B#[~],_, 3 < j < JSmAX (2 - 70a) = ' 

D# = d# + c# a# + %12 (2 - Z0b) 
AV AzD 

c# (2- 79c) 
B~ = -4-7 

--Cj =aj 

i(--I) i(-) i(-) i(-) } 
~'D+I__--~'U ~'U -- ~'U-1 

bj ~"D+'n --  ~U 
+ ¥ ~ + h-~= + c (2- 7o~ 
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where AF = Fj - F j - I ,  U signifies X N S P M I N ,  V signifies Z N S P M A X  , A Z  D ---~ Z D + I  - -  ZD, 
Azr2 ---- zp - zI]-1, n is the current time level and n - 1 the previous level. 

In one version of +.he wwiational solve, central ditl!erence approximations are applied 
to the discretization of the v components in (2 - 76), leading to the use of a tridiagonal 
Thomas algorithm. The bidiagonal formulation results from one-sided differences. If the 
recursion proceeds downward from the top of the shock notch, it is unstable. At the top, 

[~xl is determined from the fact that it is a body point. Section 2.16.1 provides more 

information on the upward bidiagonal recursion scheme represented by (2 - 79a). 
L J 

For a tridiagonal formulati,m, there has been an issue regarding the appropriate 
boundary conditions at the toot of the shock, assumed located at j = 2. Since ~b (the 
finite wall height perturbation potential) and ~0 are logarithmically singular there, there 
is a question regarding the behavior of [~1]. This appears to be resolved by the fact that 
~l,(z,O) = 0. Hence, [(bl,] ~" 0 at j -- 2. Moreover, in the finite wall (H) case, since 

s ' ( = )  In as e o (2  - so)  
21r 

then the limit F ~ 0, z fixed = z - ,  z +, where - and + denote the upstream and downstream 
sides of the shock, respectively, with St(z) continuous at the shock gives 

= c o  - co = 0 (2-  81) 

Another approach is to multiply the jump equations by F and note that [($~] - [r(b~]. This 
avoids the infinities in Eq. (2 - 81)..The relation [~xf] = 0 implies that 

[÷, ]2 = [4' h ( 2  - 82)  

Equation (2 - 82) is used to find the interference potential on the body. 

A related problem was studied in Ref. 38 in regard to the invariance of the shock 
position on a body of revolution in transonic flow. Some aspects of this question and 
conditions near the foot of the shock are discussed in the Appendix. 

2.12 Determination of Second Term of Central Layer Large Height Expansion 

For the numerical work, the asymptotic expansion of the velocity potential @ in the 
near field of the test article is given by (2 - 31). The constant ao related to a~ in that 
expression given by 

~ VrK"o" 1 / o ° ° { 1  Kx(k) } (2  - as)  

has been numerically determined. This result gives an indication of the small H elasticity of 
large H theory, a small value being suggestive of extended validity, as in the incompressible 
case treated in Ref. 37. 
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Although the integral in (2 - 83) converges, the convergence is numerically poor on a 
uniform grid due to an integrable logarithmic singularity associated with the ratio of the 
modified Bessel functions at the lower limit. 

To improve convergence, the asymptotic behavior of the integrand 

1 K~(k)~ 1, k 
k2 2 / . l ( k ) _ - ~ m ~  as k ~ O  (2-84)  

was subtr~ted and added to regulariz4", the .;ntegral to provide the modified expression 

ff ( 1 Kl(k) 
• 2a0 = 1 +  ~ 211(k) r( + ~ in dk + f2 

J 2  
2z~/dk , (2- 85) 

where kl is assumed to be sufficiently large. 

The adequacy of (2 - 84) on the interval 0 _< k <_ 2 is shown in Fig. 23. A good 
comparison between the left and right hand sides of (2 - 84) is indicated. In Fig. 24, the 
second two integrands are plotted. The decay of the Bessel function is rapid, indicating 
that a kl of 10 is quite sufficient for a practical evaluation. Figure 25 indicates the rapid 
convergence of the trapezoidal rule over a uniform grid giving the desired value of a0 and 
b0 as 

a0 -- 0 . 1 2 9 5 5 8  

- 4~1 f k~K~(k)/Z(k)dk = O.OO3409 

The small magnitude of a0 is consistent with the extended validity of the theory for mod- 
era*,e wall height hypothesized earlier. 

2.13 Structural Aspects of Slender Body Code 

A great degree of flexibility has been built into the finite and large wall height codes, 
hereinafter referred to as STINT25. Logical variables have been introduced so that the user 
can treat incompressible, linear, and transonic flows within the same code by merely chang- 
ing a NAMELIST file. For ensuing checking, parametric studies, and running economies, 
provision has been made to start either the free field, wall perturbation parts of the code 
independently or run the latter serially after the former. Furthermore, both codes can be 
restarted from a previous solution. Finally, considerable diagnostic I/O has also been built 
into the codes. 

In addition to this logic, a procedure has been conceptualized which can be useful 
in obtaining a sharper resolution of the shocks than possible in the previously described 
("upright") shock notch method. Referring to Fig. 26, the shock is considered to consist 
of subarcs of the type shown as 1 and 2 in the figure. In the blow-ups of these regions, 
these negative and positively sloped portions can be considered in terms of the proper 
difference formulas for the determination of the jump of the vertical component of the 
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perturbation velocity [vl]. The actual relationship of the points is shown in Figs. 27a- 
27c which indicate a bubble over a parkbolic arc body at Mach .99. The main idea is 
that depending on whether range 1 and 2 is encountered, an upward/downward one sided 
difference combination or the reverse is used for obtaining Iv1]. A tridiagonai system 
for the jump in the wall interference potential will be obtained in this scheme rather 
than the bidiagonal system associated with the shock notch method. However, this slight 
disadvantage could be outweighed by ~.he potential for improved accuracy. 

2.14 Incompressible Validation of Interference Module RELAXVI 

The large height interference (var:ational equation solver (RELAXV1)) code was 
tested to establish whether it could provide answers in agreement with the analytical ones 
given in Ref. 37 for incompressible interference pressures. As an illustration, the flow over 
a confined parabola of re:~lution v:a~ considered. Here, the confining walls are solid and 
cylindrical. Figure 28 indicates the free field surface pressure distributions computed by 
an incompressible specialization of the finite height code. It is shown to indicate the stag- 
nation (logarithmic singularities) resolved by the SLOR method in 300 iterations. Further 
study is needed regarding how the numerics treat the interactions of these singularities 
with the walls. 

For this case, the RELAXVI portion of the code comparison with analytical results 
from Ref. 37 is shown in Fig. 29 indicating perfect agreement. 

Of great interest is the convergence of both the free field (RELAX1) and RELAXV1 
parts of the code. During checkout, considerable study of factors influencing this per- 
formance aspect was made. Figure 30 illustrates one such investigation which shows the 
convergence of the algorithm with number of iterations for free field pressures at different 
points along the parabolic body of revolution iu incompressible flow. It is evident that at 
this speed condition, adequate convergence is achieved in about 509 iterations. A lesser 
number of iterations may be needed if a "smarter" than zero initialization is used. 

2.15 Transonic Application of Free Field (0 th Order) Code 

The numerical formulation indicated in previous sections has been applied to obtain 
an understanding of wall effects on slender bodies. Results will be discussed for a flow over 
a parabolic arc body of revolution as an illustration of the behavior of the wail interference 

field. 

For the calculations to be discussed, a uniform z-grid over the body (in the interval 
0 _< z _< I) and an exponentially stretched version off of it was employed. Exponential 
stretching was also used in the ~ direction. These variable grids are shown in Fig. 31. 

Before discussion of the interference field, the structure of the free field base solution 
will be indicated. Figure 32 shows that the numerical solution tracks the analytic behavior 
~0~ reasonably well. Considering that the mesh for this case had a large aspect ratio near 
j = 2, improvements could be obtained by configuring the grid to make the aspect ratio 
approach unity. 
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Fig. 26. Scheme for handling jumps in vertical velocities across shocks. 
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As an illustration of the use of the code for high subsonic Mach numbers, Fig. 33 
shows the streamwise distribution of local Mach number at a freestream Mach number 
-~'oo = .99 over a fore and aft symmetric parabolic arc of revolution of thickness ratio 
6 ~- 0.I. In the interval 0 ~ z ~ 1, the highest curve corresponds to j -- 2 and subsequent 
lower curves are associated with upward j increments of 4. The dashed llne denotes the 
position of the sonic line and shock. The far field computational boundary for the free field 
was at F ,,, 5.5 in t he~  calculations. It is clear from these results that the sonic 1~ne height, 
is approximately F .~, 0.2. Farther results consistent with these are shown as the isoMache 
in Fig. 34. A good, sharp shock formation is indicated in this figure. In Fig. 35, the shock 
layer structure is indicar.ed. This is of relevance to the use of the shock notch method. 
From these level lines, it is evident that the shock is almost normal. This is confn-m ,~I 
from the ~0 distributions shown in Figs. 36 and 37, where it is clear that Iv0] "~ 0. This 
leArls to simplification of Eq. (2 - 40b) which is the perturbation form of Prandtl 's normal 
shock relations, £e., 

K . (2 - 86a) 
(uo)  - 7 + 1 - u °  

[~i] [u0 ] (u l )  . . . .  ( 2 -  86b) 
( u 0 . )  

where u~ is the critical value of the perturbation velocity u0. As a check, 
Eqs. ( 2  - 86) were computationally implemented and the results were close to those ob- 
tained from Eqs. (2 - 79). Figures 38 and 39 indicate the u0 distributions. Figure 39 
shows indeed that Eq. (2 - 86a) is closely satisfied by the computational solutions. In 
related work, a hypothesis suggested by C.C. Wu concerning the invariance of the shock 
wave intersection with the body was analyzed in Ref. 38. Because of the structure of the 
near field, this hypothesis asserts that the intersection occurs at a zero of SU(z). Numer- 
ical studies such as those discussed give partial but inconclusive evidence to support this 
assertion*. More detailed fine grid studies are required to resolve the issue. 

To appreciate the rate of decay of the solution and the subsonic nature of the far 
field, Figs. 40 and 41 give three--dimensional reliefs of ~0 and ~0n. For pointed bodies, 
the forcing term of the wall interference (variational equation) is proportional to the latter 
quantity. The subsonic structure of the far field is consistent with the assumptions of the 
formulation given in llef. 29. 

2.10 Far fh~  l~m, rks  on Difference Schemes near Shock Notch 

2.16.1 Bidial~onal Approach 

In connection with (2 - 40a), and flow tangency, if 

[,o] = o (2 - 87)  

* Some aspects that relate to this are discussed in the Appendix. 
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Fig. 40. Three-dimensional  relief of ¢0 field for Moo = 0.99 parabolic arc body. 
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Fig. 41. Three--dimensional relief of ~b0.o field for Moo = 0.99 parabolic arc body. 
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is assumed to hold beyond the weaker condition, then Prandtl's relation for normal shocks 
is obtained in which 

[÷,] 0,0.) (2 - 88) 
( , ,~1= [,~0] ' 

where ( ) s i ~ f l e s  an average across the ,, , ,perturbed shock. Equation (2 - 881 can be 
used as a check on the numerical work. 

In the bidingonal scheme of treating (2 - 76a) embodied in Eqs. (2 - 79), one-sided 
differences were used to approximate the vertical perturbation velocities. This leads to the 
recursion relation in (2 - 79a). It is clear that the solution of (2 - 76a) proceeds forward 
from some initial condition associated w:.tl~ a specified j .  Two options axe available for this 
purpose. Employing the tangency boundary conditions at the body constitutes Method 1, 
and utilizing the top of the shock represents Method 2. Method 2 was first selected due to 
the seeming inability of originally assumed Neumann data at j -- 2 to provide the needed 
Dirichlet data for the starting point. One problem with Method 2 is the possibility of 
inaccuracy in prescribing the location of the tip of the shock. Method 1 can be modified 
to employ ( 2 -  88) instead of Neumann data at the node closest to ~ = 0, j -- 2. This gives 

'vea ~ ' lP 'm - -  1 

2 ~-v+~z°"r 1 + A,u j ( 2 - 8 9 /  

+ (,,o.) 

A usehd device in the implementation of the bidisgonal scheme (2 - 79) and (2 - 89) is 
the relaxation 

[~] _ w [ ~ ] ( n )  "1- (1 -w) [~]  (n-s) . (2 - 90 I 

The quantity Iv0,]2 in (2 - 89) is obtained from the zeroth order solution. 

The stability of the recursion scheme based on (2 - 79a) ,  (2 - 88) ,  and  (2 - 89) has 
been investigated. A tool employed is an analytic solution which has been obtained by 
variation of parameters. Letting Xj --- [~l]j, this is 

x j  = X'  + k : 7 -  ~ ~ ' 
(2 - 911 

where the products are unity when the upper limit index is unity. A necessary condition 
for stability therefore is 

We have achieved global convergence with the bidiagonal scheme with marching away 
from the body using Method 1, providing that we use a stabilized converged free field 
solution and a fresh start for the interference flow. 
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2.16.2 'l~ridingonal Methodology 

The thrust of this approach is to use second order accurate central difference approx- 
imatious for the vertical differences rather than the first order one-sided differences of the 
previously described bidingoual method. Employing half node points, the vertical velocity 
1/1 i8 ~iven by 

lPl j  -~- ~lj, j ---~ lP l j+z la  "~" lPl" ; - t lS 
2 

**J~l -÷*~ ÷,~ -÷,~_, (2 - 93) 
= ~ i + , - ~ j  + e~, - .e ;_ ,  

2 

An additional benefit of this approach is consistency wi~h the treatment of the interior 
nodes of the computational domain. Equation (2 - 93) leads to 

2[,,,] = [~']J+'- [~']~ [~']~-[~']~-' 
~i+, - '~i  + ~.~ -~-, " 

(2 - 94) 

On the basis of (2 - 94) and (2 - 76a), it follows that 

A~[$,]~+, + V~[&]~ + B~[,~,]~_, =C~ , (2 - 95) 

where 

Aj = cJ 

,,(, 
Di ffi a~ - ¥ " 6 + ,  , G ~  ai + 

c j  

+ ~. \ ~-~ + -~-~ , /+c 

(2 - 96a) 

(2 - 9eb) 

(2 - 96c) 

(2 - 96d) 

By (2 - 89) 

A2 - B2 - 0 
D~=I 

} "r104"1 "rU .%1. "rU " H - I  
2 A z D  A z u  

c~ = [.o]+<,,o.) 
2AffiD 

(2 - 97a) 

(2-gZb) 

( 2 -  97c) 
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At the top of the shock notch j -- JSMAX, [~1] -- [ ~ l ] i ,  where [~1]i is 
~NSPMAX - -  ~NSPMIN computing this difference as an interior point calculation. Then 

DJSMAX = 1 (2 - 98a) 

CJSMAX = [~]1 (2 -- 98b) 

Equations (2-95)--(2-98) constitute a tridiagonal system which can be ,-,qved by the same 
Thomas method employed for the interior nodes. The scheme has been computationally 
implemented and its performance relative to the bidiagonal approach is au oven question. 

2.17 Definitions of Interference-Free Conditions in Wind "I~nnels from Asymptotic 
Slender Body Code 

Rewriting (2 - 24a) slightly, the variational equation foz ~he in te r f~sn~  perturbation 
potential ~bl is 

1 
M[~bl] = (Ks - ( ~  + 1)~0.)~1.. - ( 7  + 1)~1.~0.. + ~(r~l~)~ = -K1F(z ,F )  ( 2 - 9 9 )  

with the boundary conditions 
~1,(x, 0) = 0 (2 - 100a) 

~1 ~-- bloR2 P2(cosw) + 87rboBoR cosa~ + . . .  (2 - 100b) 

as R ~ co, aud ~he shock relations, where F = ~o~, R and w are spherical coordinates, the 
constants P0, b0 have been defined previously and P2(cos w) denotes a Legendre Polynomial. 
In'shorthand notation, Eqs. (2 - 99) and (2 - 100) can be represented as the problem P,  
in which 

p.. 

M[~]  = -X~F  ( 2 -  99') 
B[,~,] = O(~) , ( 2 -  100') 

where B is the boundary condition on the union of 811 boundaries including the free field 
shock traces. With the decomposition 

~1 = ~h + ~p , 

the problems for ~h and ~p can be represented as 

ph.. 

M[4,,,] =o 
B[~]  =G(~) 
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P,: 

= K , F  

=o  

Since M is a linear operator, ~p = KI~ ,  where • is the solution of Pp with K1 = 1. Thus, 

If 
g1(.¢; K )  "-  4)1(z, 0) , 

then 
gl = g l h  + K x ~ ( z , 0 )  , 

ADH..... . .~a _ _  
so that for a specific shape, since the normalized interference drag ACD = 2q~* - 

1 

A o- = 7(K0,A) =-- 
K1 

where A - a/6  ill the notation of Ref. 29 is the angle of attack parameter, and S is the 
nm~nalized cross sectional are~. 

With the universal relation above, the curves of ACD versus KI are linear, as schemat- 
ically depicted in Fig. 42a, and can be determined once and for all for arbitrary KI from 
the solution of the Problem Pp for KI = 1 for a given/to and A. 

Because of the linearity with KI as indicated in the previous relations, the value of 
KI = K~ leading to an interference-free drag measurement can be determined explicitly 
from the universal relation as 

K~ =--i~CCDK'=°)(K°'A) (2 -  101) 
7(Ko,A) 

Plots of K~ are shown schematically in Fig. 42b. Here, K~ represents the necessary 
perturbation of the tunnel ~imilarity parameter to simulate conditions leading to zero 
interference drag. 

2,1~ Det~w;-Ation of Interference--Free Flows 

In the preceding sections a formulation of the slender body wall interference prob- 
lera in which the tunnel similarity parameter is allowed to vary to achieve minimum to 
interference-free flow is formulated. During the contractual effort, a computational so- 
lution has been obtained representing a proof of the feasibility of this concept and also 
validating the mathematical demonstrations of linearity of the interference drag ACD and 
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Fig. 42a. Schematic of ACD versus KI. 
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Fig. 42b. Schematic of variation of interference-free K~ with Ko. 
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the tunnel similarity parameter K1 given in Section 2.17. Figure 43 represents the result 
of actual calculations corroborating the analysis of the previous section for the M ~  - .99 
flow over a parabolic arc of revolution body of thickness ratio -- .1. The calculations and 
figure demonstrate that interference-free drag conditions can be achieved in this ease at 
a tunnel similarity parameter value K1 = 0.14166. Additional studies concerning surface 
pressure distributions can be performed in which KI can be optimized to achieve a min- 
imum, for example, in at least a mean square sense, of the interference pressure. To our 
knowledge, these are the first results of this type to be obtained. 

As an approximation of the numerical approa~ based on the bidingonal and tridiag- 
onal shock jump conditions, a simplified scheme has been investigated. It is based on the 
approximation that for slightly subsonic free stream Mach numbers the shock is normal to 
the flow along its length. This leads to the zeroth order Prandtl relations 

1 K 
(Uo) E ~ (Uo(9o-,F) "1- Uo (9o+,F)) -- (2 - 1023 

~ -,1", 1 

and Eo,.. ( 2 -  873. 
For a transition occurring over zero mesh points, the geometric interpretation of 

(2 - 87) is shown in Fig. 44. 

2.19 Numerical Implementation 

In accord with the previous formulation, a reduced interference perturbation potential 
~1 is defined in which the far field is subtracted o~. With the notation given herein and 
assuming a closed body, this gives 

q~l "- qb + C'z (2 - 103a) 
8z'beBo 1.594Bo C'- ~ ~ ( 2 -  103b) 

u l = f i + C  , 

where be -- .063409 from numerical evaluation of the Bessel function integral (Sect. 2.1.2). 

Denoting z grid points on the pre--shock side of the shock notch with s subscripts and 
those on the post-shock side by p, (2 - 103) can be used to obtain a discretized form of 
(2 - 87) which is 

using (2 - 41b). The sum in the braces in (2 - 104) can be simplified using the definition 

of [~] which leads to 

z~+1-=r z,-z,_~ ( 2 -  105) 
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Equation (2 - 105) represents an explicit relationship in which points on the downstream 
side of the notch can be updated in each relaxation sweep of the code. If the shock slope 

[~] is known only implicitly in the tridiagonal scheme of Section 2.16.2. is non-vanishing, 

2.20 Results 

The results to be described were computed ~slng the bidiagonal scheme formulated 
in Section 2.16.1. Others were obtained with the homogeneous Prandtl relation using the 
approach outlined in the last section. These will uot be shown here and give similar relative 
trends but discrepancies in the actual levels. Because the bidiagonal method contains the 
effect of the shock shift as well as the variation of the interference vertical velocity vl along 
the shock, it is more accurate than the homogeneous Prandtl method. 

In the actual running of the solvers for the 0 th order free field basic flow and the Ijt 
order interference component, convergence of both elements were monitored by studies of 
the maximum error ERRMAX over the computational domain. This error is defined as 
the difference between the value of the perturbation potential at the current and previous 
relaxation sweep. Figure 45a shows the behavior of this error as a function of iteration 
number for the 0 th order solution. The iteration number is a counter for the relaxation 
sweeps across the flow. Although the error decrease is rapid, a more reliable method of 
establishing the convergence of the solution is the drag level. This is shown in Fig. 45b. 
A pseudo-time asymptotic for the latter signifies stabilization of the shock location and 
other flow features. Convergence to the drng for the 0 th order solution usually followed the 
monotonic pattern indicated with a zero initial iterate. The values of the reIaxation and 
other parameters for such behavior will be discussed in the user's manuals. Convergence 
of the 0 t~ order solver RELAX1 takes about 3000 iterations for the higher subsonic Mach 
numbers such as the .99 value of Fig. 45b. Approximately 1000 or less iterations are 
required for supersonic or lower subsonic Mach numbers. Figures 46a and 46b demonstrate 
the convergence of the interference (variational) solver RELAXV1. In marked contrast to 
RELAX1, RELAXVI is at least ten times faster. Both solvers have restart capability and 
this can accelerate convergence from the performance indicated. One run strategy is to 
march in Mach number space using solutions for a lower Maeh number to initialize the 
solution at a higher Mach number. 

Both RELAX1 and RELAXV1 are scalar and unoptimized in keeping with t hd r  re- 
search status. Further increases of performance can be achieved by vectorization and other 
optimizing techniques, which we anticipate will lead to seconds of run-t ime on CRAY ma- 
chines. The order of magnitude speed increase of the 1 st order interference flow code from 
the 0 tl~ order solver is associated with the frozen coefficients in the difference operators 
during the sweeps. This is related to the linearization upon the basic flow embodied in the 
description of the perturbation interference field. 

As a baseline, Fig. 47 gives pressure distributions along a parabolic arc body of 
thickness ratio ~ - .1 for different Mach numbers related to the transonic similarity pa- 
rameter K = (1 - M~) /62 .  Although there appears to be some upstream movement of 
the shock as the Mach number is reduced from .99, this may be illusory due to the need 
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to numerically resolve the fine structure of the layer near the logarithmically singular line 
= 0. A recent hypothesis proposed by C.C. Wu and analyzed in detail by :I.D. Cole and 

N. Malmuth in Ref. 38 indicates that the foot of the shock occurs at the zero of S ' ( z )  at 
the rear of the body. This assertion is based on consistency arguments involving the inner 
expansion of transonic slender body theory, Prandtrs  normal shock relations, and the glow 
tangency condition at the body. Fine grid solutions are required to investigate this asser- 
tion. In addition, there is probably a high z gradient deck near the shock impingement 
point which asymptotes to the logarithmic layer behavior upstream and downstream of 
itself*. On the other hand, there is another scenario in which the shock does not strike 
~he body but makes an abrupt turn above it. Evidence to suI~.uo,'~ the first contention 
is shown in Figs. 33-35 in which the location is very nearly a'~ P downstream S"(z) - 0 
point - ~ -I- ~ ffi .7887 for the fore and aft symmetric parabolic arc body exempligled 
here. More detailed study is required on the formation of the envelope of the compressive 
waves reflected downstream from the sonic line, since focussin~ and the structure of the 
inner F --+ 0 layer has a bearing on the use of an internal upright notch which encapsulates 
the shock transition in the calculation of the interference flow. Surface pressures for the 
latter are shown in Fig. 48. The anticipated increase in suction over the forebody is in- 
d:cated and is associated with the constrictive effect of the walls giving an acceleration of 
the glow over the model. However, there is a sharp compressi':e spike near the shock. It is 
interesting to note that the upstream level is qualitatively and phenomenologically similar 
to that exhibited by the incompressible glow analyzed in Ref. 37, whose transform solution 
was used to validate the incompressible specialization of the O th order solver RELAX1 
in Fig. 29. This agrees with the qualitative features of the subsonic flow a.",:ay from the 
sonic region. Clearly evident in that figure is the nearly constant level of the interference 
pressures associated with the doublet reflection of the solid walls. This appears as the far 
field singularity in the formulation of the problem. A rapid localized violent transition 
spike at the shock interrupts this serene behavior. It is anticipated that the intensity of 
this spike will be reduced by shock-boundary layer interactions in real flows. 

For the case shown, the pressures have the proper antisymmetry about the dotted line 
in the glgure which represents the appropriate average levels from the perturbation form 
of the Prandtl normal shock relations specialized at the foot of the shock. If the latter 
strikes the body, the boundary condition of tangent ~low implies [vl] - 0 implying that 
the line of intersection is along the normal to the body. This trend is similarly exhibited 
as shown in Figure 49 which gives an indication of the lumped normalized interference 
pressure dependence on Mach number through the similarity parameter K. In accord with 
expectations, the interference increases with increase in Mach number. 

Returning to the Moo -- .99 case, Fig. 50 shows in exaggerated form the tunnel 
pressure when the interference pressure is superimposed on the free gleld basic glow. Again, 
the antisymmetry about the critical pressure level shown as the dotted line is evident as a 
check on the computational implementation. 

One issue that arose in the computations was the sensitivity of the convergence of 

* See Appendix A regarding this issue. 
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interference flow to notch dimensions. This was pronounced for the bidlagonal recursion 
for computing [~] at the shock but much less evident in the tridiagonal approach scheme 

described previously. For the calculations, the proper shock tip location and notch width 
t J  

had to be used. An approximation for the upstream and downstream legs of the notch 
was obtained by a detection scheme implemented in RELAXI in which the most upstream 
and downstream location of the downstream part of the sonic llne was determined. The 
shock tip was defined as the subset of this locus for which the pressure gradient exceeded 
a preassigned tolerance level. Some experimentation is required in adjusting the width 
of the notch. This was accomplished most efficiently through the use. in the coT, trol file 
LOGPARM"..RMS of indices NU, N D, JDEL which represent incremental chan~J in the 
upstream and downstream notch vertical boundaries at the z grid indices NSPMIN and 
NSPMAX respectively and the ~ grid index JSMAX. Some adjustment of these parameters 
was necessary to prevent divergence. This inconvenience of the bidiagonal scheme over 
the tridiagonal method was tolerated because it was felt that divergence was .~ desirable 
sensitive indicator of an inappropriate encapsulation of the shock. In particular, t~o narrow 
a notch allowed artificial numerical fluctuations in the 0 th order shock layer to destabilize 
the I st order interference flow. Moreover, too large or too small a value of JSMAX was 
associated with an improper location of the shock tip. In fact, for the Moo - 96 ease, 
no shock occurs in this supercritical flow and a truly isentropic transition is obtained. 
Logic in the code was developed to handle this degenerate situation. At the higher Mach 
numbers, once a base level was obtained for convergence through proper selection of NU, 
ND and JDEL, rather substantial parametric elasticity was exhibited. The broad band of 
this tuning is indicated in Fig. 51 which shows that the main features of the interference 
pressure distribution are retained with perturbations of these parameters. This tuning is 
more delicate at the low~ Moo due to the ditfusion of the shock and its deviation from 
normality at its foot. 

Corresponding to these pressures, Fig. 52 shows the Mach number dependence of the 
interference drag. In spite of the generally increased test section Mach number due to the 
constrictive ef£ect of the walls, there appears to be an interference thrust at the higher 
tunnel Mach numbers which increases with Mach number as the latter approaches unity 
from below. This is presumably due to the increasing net suction force on the forebody. 
A similar trend occurs for all the bodies tested in Ref. 36. The thrust also increases with 
blockage ratio, again in agreement with Ref. 29. However, before a quantitative com- 
parison with experiment is attempted, sting effects should be incorporated. In addition, 
the database of Ref. 36 is for slotted rather than solid wails. It also represents ~lues  of 
H _< 0.3 in contrast to the large H results given herein. The sting effect will add the 
additional term to the far field given in Rd. 29. 
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3. L A R G E  A S P E C T  R A T I O  C O N F I G U R A T I O N S  

In this section, transonic wall interference of configurations having high aspect ratio 
wings will be treated. The main emphasis of the theoretical and computational effort is the 
treatment of wing-alone cases. There is evidence to support the belief that the wing inter- 
ference dominates many high aspect ratio wing-body shapes of practical importance. In 
spite of this, some discussion will in fact be given to wing-body arrangements. Rather than 
being concerned with the development of a production code, the exposition that follows 
will emphasize structural and mathematical features of the flow field and the description 
of a research code that provides information on these a~pects. 

3.1 Theory of Far Field Boundary Conditions 

A basic feature of the asymptotic theory of wind tunnel wall corrections on high as- 
pect ratio wings to be presented is that it systematically accounts for the influence of 
the wall modification of the far field induced downwash on the nearly two-dimensional 
near field flow over the wing. In Section 3.1.1, this correction is obtained for free jet and 
solid walls. For convenience and without great loss of generality and utility, the analysis 
is limited to circular test sections, although the initial setup had been made for rectan- 
gular test sections in Ref. 29. Section 3.1.2 generalizes the analysis of Section 3.1.1 to 
account for pressure distributions described on a cylindrical control surface. This part of 
the effort is motivated by wall interference-assessment-correction (WIAC) methods which 
use additional pressure measurements on such a control surface to account ior factors not 
[~resent in classical boundary condition simulations such as that of Section 3.1.1 and the 
usual perforated and slotted wall "radiation" and ~oblique derivative" boundary condi- 
tions. The additional measurements combined with large-scale computational simulations 
such as that discussed in Ref. 39 can be used to determine if a wall correction is feasible 
and evaluate it quantitatively. 

3.1.1 Solid Wall and N~ree Jet Corrections 

3.1.1.1 Discussion 

An outline of the treatment of closed (solid wall) rectangular cross section test sections 
is given in Ref. 29. The treatment of pressure specified boundary condition has similarities 
to the solid wall case and important differences. For a large span wing in a tunnel of 
comparably large lateral dimensions* both the solid wall and pressure specified case have 
an asymptotic flow structure similar to an unconfined large aspect ratio case. The near 
field flow is essentially two dimensional at each span station (strip theory) but with an 
incidence field modified by downwash associated with the trailing vortex system related to 
the large but finite aspect ratio. These ideas were the basis of Prandtl 's lifting line theory 
and have been formalized for transonic speeds as a systematic asymptotic approximation 
by Cook and Cole in Ref. 32. To our knowledge, no one has treated the confined case, 
even at incompressible speeds using matched asymptotic procedures. 

* Other limits are possible such as the span tending to co at a slower rate than the 
tunnel's lateral dimensions. 
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Both the solid wall and pressure specified situations have nearly two--dimensional near 
fields which in the asymptotic formulation reduce to the previously outlined strip theory. 
The finite aspect ratio downwash correction is evaluated from matching with a vortex sheet 
emanating from a lifting line modeling the far field (outer flow) behavior of the finite span 
wing. What is different in the three cases is the nature of this downwash correction and 
the structure of the far field flow. For the free field case, the near field incidence correction 
is obtained from vortex and divortex representations of the lifting line. These can be also 
ida ted  to a doublet sheet representation as well as Biot Savart's law. For the confined 
c ~ s ,  the vortex and divortex elements on the doublet sheet must be properly imaged in 
order ~,o satisfy the wall conditions. This imaging is obviously diiferent for the solid and 
pressure specified cases and will thus produce differing incidence corrections in the near 
(inner flow) field. 

In accord with the fm'mulation of Ref. 29, the dominant order equation for the far 
fie~d flow is the Prandtl-Glauert equation. This is true providing that the far field relaxes 
to ~ubsonic flow, and is usually associated with high subsonic freestream Mach numbers. 
Slightly supersonic upstream flows which were not treated in the contract require a different 
far field treatment, involving the interaction of the characteristics or Mach waves with the 
control surface or walls. 

The Prandtl-Glauert outer flow problem can be rescaled by a stretching in the free- 
stream direction to give a problem mathematically equivalent to the incompressible prob- 
lem (Prandtl-Glauert/Goethert rules). This problem reduces to the determination of the 
near field potential of a doublet sheet accounting for interactions with a control ~urface 
boundary on which pressures are specified. These features are shown schematically in 
Fig. 53 for a rectangular cross section control surface 5~, + Sx enclosed within a rectan- 
gular cross section tunnel. According to the preceding discussion, pressure distributions 
obtained from measurements are assumed given on the control surface. An integral rep- 
resentation for the perturbation potential ~b of the doublet sheet Sw can be obtained by 
using Green's formula. Introducing the Green's function G corresponding to a point source 
satisfying homogeneous Dirichlet conditions on the wall allows the wall effect to be char- 
acterized in terms of the control sttrface specified pressure distributions and removes a 
redundant term involving the normal velocity. 

Since C~ is proportional to ~ffi, where z is the streamwise coordinate, an integration 
with respect to z converts the problem of specifying ~bz to one in which inhomogeneous 
Dirichlet (~) data are given on the control surface. 

3.1.1.2 A n a l ~  

As has been indicated in Ref. 29, the appropriate asymptotic expansion for the velocity 
potential ,I~ governing transonic small disturbance flow over the high aspect ratio wing 
shown in Fig. 54 is 

O 
= z + ~/34,(z, ~, ~; H,  B, K )  + . . .  (3 - 1) 
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Fig. 53. Lifting line in rectangular cross section wind tunnel. 

where U is the freestream velocity, Moo is the freestream Mach number, b is the span, 
h is the tunnel dimensionless radius, 6 = wing thickness ratio, (z, y, z) are Cartesian 
coordinates, r , 8 , z  cylindrical coordinates shown in Fig. 54, ~ = 61/sy, ~ = 61/Sz, H = 
•1/3 h,  B = A H  = 61/'b, K - (1 - M ~ )  / ~ / s  are fixed as ~ ~ O, where h is a fixed span to 
height parameter making the aspect ratio effect the same size as the wall interference. On 
substitution of (3 - 1) into the exact equations, the following small disturbance equation 
for the perturbation potential ~b results 

(K - (~ + 1)¢.)  ~ . .  + ~jj  + ~jj  = o , ( 3 -  2) 

or in cylindrical coordinates: 

I 1 

In the strained (tilde) coordinate system, the tunnel wall boundary is at F = H. Since the 
pressure coe~cient Cp is given by 

c',, = -26~/3¢, ,  , (3 - 3) 

prescribing the pressure at the wall is equivalent to specifying ~ there. In fact, measured 
Cp's on the wall or some control surface can be regarded as a known left hand side of ( 3 - 3 )  
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Fig. 54. High aspect ratio wing within cylindrical pressure specified control surface. 

from which ~ can be obtained by an integration with respect to z from some convenient 
downstream station such as - c o  up tc the current z value. Anticipating the z scaling in 
an outer limit, the resulting Dirichlet boundary condition for ~ can be written as 

= w t ,o) . ( 3 :  4) 

In accord with previous remarks, an outer expansion which gives a lifting line struct'ure to 
the high aspect ratio wing as H --* oo is 

log/ /  1 
~C~,~,~.;//) = ~o(~*,v*,z*)+ ~ 1 : , .  + ~ . ,  + ... ( 3 - 5 )  

which holds in an outer limit 

z * = ~  , y * = ~  , z * = ~  fixed as H --* co ( 3 - 6 )  

The transverse straining embodied in the starred variables keeps the walls fixed in the 
starred coordinate system in the limit (3 - 6). The outer boundary value problem for the 
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dominant term Cpo of the lifting line expansion is 

1 1 
K~o,. + ~'o,... + - ~ o . .  + "~Oo,  = 0 (3 - 7a) 

~oC,*. z. o)= w(,*,o) ( 3 -  7b) 

[~Po]=F(z*) on the w a k e z * >  0 , y * = 0 , - A < _ z * _ < A  (3  - 7c )  

where the [ ] signifies the jump across the vortex sheet shown in Fig. 55 and is propor- 
tional to the local circulation at the span statiox, z ~. 

f',, f~ 
i r' y" Sw 

/ I LIFTING .--~- • / 

..,, X-vo.  x I / 

Fig. 55. Far field flow configuration showing lifting line and vortex sheet. 

The main result to be obtained in what follows will be the downwash at the loaded 
line, i.e., the value of ~o , . ( z* , y* , z* )  as z* , y* ~ O, z* fixed. 

W (z * ,  0) = 0 in (3 - 7h), then the boundary condition on the cyUndrlcal control 
surface r* = 1 shown in Fig. 55 corresponds to a free jet. The corresponding solid wall 
condition is 

~ o ~ , .  z,o) =o  (3-81 

An integral representation for ~0 can be obtained by scaling out the K factor in Eq. (3-7a)  
as in 1%ere. 30 and 32 with 

Z7 = y * / K ,  ~ = z* /K (3 - 9a) 

and 
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so that the Prandtl-Glauert equation (3 - 7a) transforms to Laplace's equation in three 
dimensions. Application of Green's theorem to the boundary value problem for this equa- 
tion with boundary conditions (3 - To,c) in the cylixAdrical region enclosed by the surfaces 
Soo, S-oo, Sw, and So leads to the following integral representation 

@ = I ,  + lw~., (3 - 10a) 

where 

where G denotes the Green's function, n is the outward drawn normal, S, is the vortex 
sheet surface, and S,~n, is the wall surface. 

In the coordinates shown in Fig. 56, and assuming for convenience that the transonic 
similarity parameter of the free field, Ke, appearing in Eqs. (54) of Ref. 29* is unity, 
Eqs. (3 - 10) imply that 

(3 - l l a )  

$C.0480-CS 

y,n / 

z, 

Fig. 56. Angular variables for Green's function associated with cylindrical walls. 

* The results that follow can be easily generalized to arbitrary/to by the scale trans- 
formation X -- z*/vf'~ used in Ref. 29. 
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where h = the tunnel radius in units of the root chord, b is the span in the same units, 
and B ffi 51/3b, H = 61/3h, p = H / B  ffi h/b. In addition, "y(¢) = spanwise loading 
= [~] = ~ ( ~ , 0 + , ¢ ) -  ÷(.~, 0 - ,  ¢), x* ffi x/s, ~* = 6 ' /av /B ,  z* = 6 ' / 3z /B ,  6 = wing 
maximum thickness, x, p, and z are the Cartesian coordinates normalized to the root 
chord. In what follows, the star subscripts will be dropped. 

As previously discussed, the open jet wind tunnel wall boundary condition 

~(z ,p ,e)  = 0 (3 - Z2) 

corresponding to constant, pressure on the jet was assumed. For this caae, G(x, p, 9) = 
Iw~. = O. The Green% f~c~ion for thia problem is applicable to the ge.eralizatio~ i.~olvin9 
preeaure-apecified bou.dary co.ditio~ on a control aurface aurrou.ding the test article. 

The appropriate Green's function satisfying a homogeneous Dirichlet condition such 
as J~q. (3 - 12) on the wails is 

O -- 2~p2 cosn(8 - 8') ~ e - ~ " z l = - ( l J " ( A " & r ) J " ( A " k P )  

._--oo k ~.k [~'(~.kp)]' 
where 

)~nkP= j .k  , 

j . k  axe the zeros of the J .  Bessel function giveu by 

J .  ( j .k)  = 0 

and ~ = - o o ( " "  ") oo ._ = = ~ . = 0  e . ( . . - ) ,  where e0 1, e .  2, n > 0. 

An alternate representation for G is given by 

( 3 -  13) 

( 3 -  14) 

G =  -~z-~,2 =_®eos,(O- ~) cos~(~- ~')z.(~r') x.C~r)-  K.C~S)Z.(~r)z.C~S) d~ 
( 3 -  15) 

Equation (3 - 15) is in a particularly advantageous form in which the free field com- 
ponent can be separated out in the determination of the wall interference effect. In fact, 
the first term in the braces leads to the singular part of G, which is a point source in the 
free field. When this is integrated from z = 0 to oo and across the span, it gives the free 
field potential of a loaded line, that is, the dominant approximation of lifting line theory, 
which is 

~LL = ~ / _ l  7(¢) 1 + ~fZ2 + y2 + (Z -- ~)= p= + (Z -- ~)2 

This can be shown from the Addition Theorem for the modified Bessel functions 

oo  

eos n(0 - O ' )Z . (~0K . (~ ' )  = x0(~R) 
n ~ - - O O  

(3  - 16a)  

99 



AEDC-TR-91-24 

R 2 = r 2 + r "  - 2 r r '  c o s ( e  - e ' )  

and the cosine transform 

1 / °°Ko(~R)cos~(z  _ z ' ) d ~  = - ~-~-~, 
Jo 4¢-, /R 2 + (z - . , )2 

( 3 - 1 7 )  

Thus, the free field potential of a unit intensity isolated source is the right hand side o~" 
(3 - 17) which by Eqs. (3 - 16) is represented by the first i n t e g r ~  in (3 - 15). 

Returning to ( 3 -  11a), the inner integral represents the potential ~o of a line doublet 
parallel to the z-axis in t.he ~ = 0 plane and at the span location ¢. Performing the 
indicated operations, 

OG ~o =/oC" ~'[.=od~ 
~" (2 - e-~nk z) 

2¢,.2 ¢ .= _ ~ .~ 

~>0 
~ (2 - e - ~ ' ' ' )  

_ 2¢U2 ¢ ~ ns inn  ) 2 , , 

~<0 

(3- x8) 

( 3 -  19) 

Of key interest is the behavior of ~b0 and I~ as z, p --* 0. This is the essentia] result sought 
in determining the downwash on the loaded llne and matching with the inner solution. To 
determine this behavior, ~0 can be further decomposed as follows: 

f ~0 = & - s2 , z, = 7(¢)~0a¢ 
B 

(s- 20) 

where, without loss of generality, only ~ > 0 will be considered*, and 

& - 2~2¢ ~".: n s i n n 0 - E  2J .  ( ~ . k r ) J .  (,~-~0 
. = -  ~ ~'.~ [ s , .C~ .~ . ) ]  2 

(3 - 21a)  

. = - o o  ,, 2 

, (3 - 21b) 

where 0_ - # - Ir/2. 

Two primary steps are employed to obtain the desired result. These are: 

* Extension to ¢ < 0 is trivia]. 
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. 

. 

Recognize that Sz represents a two--dimensional vortex in the "f~eiRz plane (and math- 
ematically prove it using the properties of Fourier-Bessel series). 

Separate out the free field line doublet from $2 by using a process resembling Kum- 
mer's transformation to accelerate the convergence of the series. It consists of sub- 
tracting and adding the "tail" of the series which represents the singular part of the 
Green's function associated with the free field. 

Evaluation of $1 

Consider the line source 

o ° = a ( ~ , o , . ; ~ , . , ¢ ) a (  

then 

1 O0 

.=.-= ~ ~, [a'.(~.~)] ~ ( 3 -  92) 
1 , 

= ~G (co, r,O;p,O') 

From (3.13.4), p. 134 of Ref. 40, the inner sum can be eval.~ated as a limit of a Fourier 
Bessel series. Noting that 

k ~ k  [J'~(J.k)] ~ - ~-~ 4 J . ( . )  

and using the asymptotic properties of the Bessel functions as ~" ~ 0, from Ref. 41, 9.17 
and 9.19, Eq. (3 - 22) becomes 

a*(o,r,O;p,O')= ~ lne- = l C _ ~ - f " } ~ - ( o - o ' )  , 
n = l  F~ 

0 < r_ < p< 1 (3--24a) 

= ~ Inr_- {r-"-r"}cosn(O-O') , 

0 < p_ < r < 1 ( 3 -  24b) 

where r__ - r i p  and p_ - p ip .  Introducing the complex variables Z = z + iy, Z '  = ( + ir h 
Eqs. (3 - 24) can be represented as a geometric series which can be summed. This gives 
forp  = 1, 

_ 1  - - l o g ] Z -  1 G*(O,r,O;r',O~)= 4r,{log[Z Z'] , ~-Tl-ln[Z-7[ } ( 3 - 2 5 )  
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Equations (3 - 22) and (3 - 25) demonstrate that  the line source appears as a two- 
dimensional source reflected in the walls in the "l~et~tz or z -- 0 plane. The first term of 
Eq. (3 - 25) is a free--field source at the point Z'.  The second and third terms are the 
image of this singularity in the walls using the inversion point 1/Z -7. Equation (3 - 25) 
represents the classicad formula for the Green's function of the first kind for a unit circle. 

To evaluate SI, it can be shown that  

aG" I 
S x =  a~ ].=o ' 

and therefore from Eq. (3 - 25), with Z '  = ¢ on the reals, 

,{ S1 = 
(z - 0 2 + I f  

(3- 26) 

In accord with the previous discussion, the first term in Eq. (3 - 26) represents a two- 
dimensional doublet in a free field, and the second its image in the circular projection of 
the walls. The plus sign in (3 - 26) corresponds to a free jet, a negative sign is associated 
with solid walls. 

Evaluation of $2 

To implement Step 2, some preliminary processing of $2 is required. Accordingly, let 

(3 - 27a) 

~k.  = e-A"*'J" (A .kr )  J .  (A.~(:) (3 - 27b) 

and 

s ,  - s2(o)  = s 2 d ,  

Also, let 

(3 - 28) 

Then, using Kummer's  transformation 

~U 
~ =  ~ (3- 29) 

,~=u+ ~ eo~.a_~'C~.-~t,,) 
n=--oo k----1 

(s-so) 
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k = l  n =  oO 

,..: ~-...,.0o..,. (~7) ~. (~) 

( 3 - 3 1 )  

(3 -32)  

The Sk.  defined in Eq. (3 - 32) represent the asymptotic behavior of ~k. in the l imit  
/¢/,t ~ oo as k --+ co. Also, the interchange of sums in Eq. (3 - 31) is assumed to be 
legitimate. 

The quantity CT is evaluated as foUows: Noting from Eq. (3 - 31) 

~ ~ (~7)(~) U -- e -~ '= / "  cos nO,Z. ,l. , (3 - 33) 
k : l  n : o o  

from the Addition Theorem, 

N O0  

R =  ~/=2 +u2 +(z _¢)2 

and the Schl6emJlch series referred to in Refs. 40 and 41, 

E =  ~-K+ T + ~---'[2nq-a(-1)"-aB2"R2"-'P2"-a 
n = l  

, ( a - u )  

where m 

R =  R/~ 

X = =/~ 
B2. = Bernoulli number 

P .  = Legendre polynomial 

Noting that 
1 

s2(0) = ~s~ , 

and performing the integrations and differentiations of Eqs. (3 - 28) and ( 3 -  29), it follows 

(z - ¢)2 + y2 ~,[(~ i),+~,] 
_ p= + O(=y) 

+ :2 v ~ a.(z - ¢)2(~,,-3) 
. = 2  

( 3 -  35) 

that 
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where the O(zy) terms arise from the second sum in Eq. ( 3 -  30) and the term proportional 
to z2y comes from the last sum in Eq. (3 - 34). Both of these are assumed to be negligible 
regular functions compared to the singular contributions shown. Because the singular part 
has been subtracted off, the convergence of the second sum is anticipated to be rapid. The 
last term in Eq. (3 - 35) is the dominant term of the sum in Eq. (3 - 34) evaluated by use 
of the expansion of P,(t,) as a finite series in v, and summing by rows instead of columns. 

Discussion 

From Eqs. ( 3 -  11), ( 3 -  20), ( 3 -  26), and (3 - 35)*, the desired expression for Iv is: 

!/ 8 1 [1+ ~.)2] 

,de + o(xy) 
( 3 - 3 6 )  

® 
Equation (3 - 36) provides the dominant inner behavior of the outer solution for the 
open wall (free jet) case. It contains terms (~) which correspond to the free field and (~) 
which are associated with the wall effect. For a solid wall, the sign of (~) is negative. 

The implication of Eq. (3 - 36) on the matching of the transonic lifting line theory 
of unconfined high aspect ratio wings given in Ref. 30 is that the horseshoe vortex system 
because of its imaging in the walls modifies the near field downwash by an amount asso- 
ciated with the term (~) . Structurally, the matching elements between the outer and 
inner solution are otherwise unchanged. 

3.1.2 Pressure Specified Boundary Conditions 

In the previous section, the modification of the downwash on the loaded line to free 
jet and solid wall boundary conditions for high aspect ratio wings was considered. In this 
section, the effect of specification of arbitrary boundary conditions on a cylindrical control 
surface enclosing a high aspect ratio wing will be derived. 

Referring to Eq. (3 - 7b) ,  a decisive step in achieving this result is to split ~0 as 
follows: 

Cpo = cp,7 + ~Pc (3 - 37) 

In (3 - 37), ~ j  is the potential associated with free jet boundary conditions, i.e., 

* An alternate analysis was performed leading to the same results which used asymptotic 
treatment of Fourier transform representations of the far field flow based on Tauberian 
theorems. 
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The quantity ~oj satisfies the jump condition (3 - 7c). Since the outer problem is lincox, 
we can satisfy the remaining boundary condition by setting 

~o(x*, 1,0) = wcz*,e)  ( 3  - 38) 

and [~0] = 0 on the wake. Note also by linearity that ~oa and ~oc both satidy (3 - 7a). 

The problem for the correctiun potential can be solved by Fourier transforms and 
eigenfunction expansions. The appropriate exponential Fourier transform pair is 

f o o  

~o ~ . - . .  J-loo e 'hf ~(  l~' r * ' e )dk  (3 - 39a) 

~ = ~ / ° °  ~ - ' ~ " ~ ( x ' , r ' , 0 ) d , "  
d - - O O  

( 3  - 39b) 

Also, W can be represented as 

W = / ~  ~-'k'W(S, k)dk (3 - 40) 

Accordingly, the subsidiary equation for ~ is 

_ 1 ~ g~.~. + ~,. + ; ~ o ,  - Kk2~ = o (3 - 41) 

Equation (3 - 41) can be solved by eigenfunetion expansions. By separation of variables 
the Sturm LionviUe problems for the eigenfunctions RA(r*) and T,(6) are 

2 (3 42a) 2~,' + ~ .T .  = 0 

*'~" +r*R~ (Kk2r .2 -I- ~ ) R n  0 (3 -42b)  r J ~ n  - -  

The T, and ,~n can be obtained f rc~ the conditions 

~(~*, 0) = ~C~*, -0) 
,,o(,.'.. o + 2,) = ~C,.*, o) 

and axe T ,  = cosnO, A, = n = 0,1,2,3, . . . .  Equation (3 - 42b) is the modified Bessel 
equation, whose solutions are 

P~C~') = K.CkvT~*) 

The It'= solutions are discarded since they violate an additional condition that ~o¢ is 
bounded as r* --* 0. The resulting eigenfunction expansion for ~ can thus be written 

8 8  oo 

= AJ0(kvrgr ") + ~ A.In(k~/-gr')  co . -S  (3 - 43) 
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Writing the  t ransform of (3 - 71)) as 

~(1,0) = W(k,O) , (3 - 4 4 )  

can be obtained as 

io(k~£,-') 
~= (w(~,o)) io(kV'-g) 

~. ~ 1.(kV'-g,-*) 
+)..7, (3 -45)  

where 

2 fo'~(k,S)cos.Od o 
The  desired results can be obtained by examining (3 - 46) in the limit y* 

COS 0 = ~* 

this limit are 

(3 - 46a) 

(3 - 46b) 

--* 0. Since 

zL. " , this corresponds to 0 -* ~. Some useful asymptot ic  expansions in 

cos(2n - I)8 ---- ( -  1)"- ]  (2n - 1) cos 8 + O(y *a ) (3 - 47a) 

cos 2n0 = (-1) " - I  Jr OCT/"2) (3 -47b) 

o .  = w.Ck)X"Ckv~") 
z.CkvT) ' 

f o r ,  = 1 ,2 ,3 , . - .  fixe(i. 

Let t ing 

then spUtting the  sum into odd  and even components  as follows, 

o o  o o  o o  

n m l  n = l  n = l  

and  not ing tha t  
x~.Ckvrg', *) - 1~.(kvrg~ ") + O(~'") 

giv~ 

o r  

~ . ( k , 0 , ~ * )  = z-; .ffil 

~,.(~',0,~*) = ~ . = ~  - X2.-x(kCK) 
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so that 

~ ( - i ) " - ' ( 2 . -  i) w,._,(~) "'" dk ~,.(o,o,=') = ~ . . .  

n~--1 

By virtue of (3 - 46), 
o o  

wok, o) = Wo(k) -I- E W.(k) cos no (3 - 48a) 
kffil 

w(,' ,0)  = Wo(=') + ~ w, , ( . ' )o~.0  
k = l  

(3 -48b) 

Also, 

Thus 

pO0 

= d=" 

1 E ( _ l ) n _ 1 ( 2 n  - 1) W2=-1(z*)dz" ~c,.(0,0, z * ) -  2~'z* n=1 

[= ~-,k,. Z2.-l(kVrg~') d~ × 
j_= 

(3-~9) 

Here, 

2 fo r W(z*,0) cos(Zn - 1)6d0 w2.-i(=*) = 

If it is assumed that all higher harmonics such as n = 2, 3, . .-  are zero in (3 - 48b), then 
(3 - 49) simplifies to 

~c,. (0,0, z * ) -  1 / _ ~ W l ( z * ) d z * f _ ~ e  -ikffi*II(kv~z*)dk ( 3 - 5 0 )  
2~rz* l l(kv/K) 

The inner integral in (3 - 49) can be evaluated by residues. The poles are pure imaginaries 
given by 

k = ijn,, , s=1,2,3 ,""  
where the jna are the zeros of Jn, i.e., 

which are all resl and simple. 

The higher order pole at k = 0 is negligible since the integrand is bounded at the 
origin. If k = ~ + iT, then the asymptotic behavior of the integrsnd is 

_ , . .  = o " - z.(kv'-g) X, / 
Ikl--* ~ ,  '1 < 0,  z* > 0, Iz*[ < 1 

(3-51) 
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which implies that the inversion integral can be evaluated by summing residues inside a 
semicircle (]~[ = R, r /< 0) in the lower half plane as shown in Fig. 57. Equation (3 - 51) 
insures that the integral will converge. Summing the residues g;ves finally after some 
interchange of the orders of integration 

1 oo ~ J,(jn,z*) f_°°ooe_J..:lf*lwn(z.)dz. ( 3 - 5 2 )  ~%. (O, O, z*) -- Vr~z. ~ (-1)"n j~(j,,.) 
nml,3,5,-.- am) 

l irl ® 

-ijns 

Fig. 57. Contour for inversion of the inner integral in Eq. (3 - 51) 

where the continuation of the inversion for z* < 0 has been made. Now the integral in 
(3 - 4 9 )  can be expressed as 

/2 f 
2 

= ~ {f(o) + o(~-~)} 

if the integrand is expanded assuming that A is large. This can be a useful approximation 
since ins >_ 3.83171. It implies finally that 

2 oo ( -1)"(n)  ur tn~ Jl-(-j"lz*) ( 3 - 5 3 )  
~c,.(0,0,z*)- vT~* ~ . . . ,v,  j, g . , )  

n:1,3,5, . - .  3n1 
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If the higher harmonics are neglected, due to the rapidity of convergence of the series, 
(3 - 53) reduces to 

2 w~(o) Jx 0 -~* )  ( 3 -  53') ~ . ( 0 , 0 , ~ ' ) -  ~/-g~. j ,  j~(j ,)  

where 
W,,(O) = _2 --/" W(O, S) cos n~d~ 

Jo 
T h e ,  to obtain the ~J~ll interference ~aocia~ed toith a aeries of pressure measurement8 on 
a control cylinder, only those at the location of the wing are important. Equations (3 - 5$) 
glee the effect of non-ze~  w,~ll pressure on the downwa~h at the loaded line. 

3.2 Numerical Procedures and Outline of Code 

A formulation of the high aspect ratio problem is given in Ref. 29. As indicated in 
Section 3.1.1.2, the asymptotic expansion for the velocity potential @ is 

(3 1) -~ = x + 8 2 / s ¢ ( z , ~ , ~ ; K , A , H , B )  + . . . ,  

which is valid in the Karman Guderley (KG) limit 

z ,~  = 6liSp, ~. = 6 1 ] 3 z  K - -  1 - M 2 A = ~ , B = 61lab, H = h8113 fixed as 6 ~ 0, 
' ~ I S  ' 

( 3 - 5 4 )  
where ~ - thickness ratio, b = semispan in units of wing root chord, M¢~ = M a c h  number, 
h = open jet, dosed wall, pressure specified control surface radius in units of wing root 
chord, and a ffi wing geometric angle of attack. 

Within the KG limit (3 - 54), a secondary (confined lifting line) limit is considered for 
a high aspect ratio wing in which the wall interference is of the same order as the three- 
dimensional effect associated with finite aspect ratio. Accordingly, in an "inner limit" near 
the wing, the fiow field is almost two dimensional with 

1 
~(x,~,~;A,K,~) = ~o(z,O;Ao, Ko,~) + ~l (x ,# ,z*;A0,Al ,~ ,K0,K1)  + . . .  (3 - 553) 

= K0 + -~KI + . . .  (3 - K 55b) 
w 

= A0 + BAx + " "  A (3 55c) 

in the inner limit 
H = h  

z* ---- B '  z, ~, p = B ~ fixed as B --* co, 6 --* 0 independently. (3 - 56) 

As indicated in Ref. 29, the fax field for the inner problem for the finite aspect ratio, 
wall interference correction ~bl is governed by a far field associated with an outer problem 
corresponding to a bound vortex shedding a trailing vortex sheet. 

In what follows, the formulation and description of the pilot lifting line code accounting 
for wind tunnel wall interference will be given. The analyses will assume without excessive 
loss of generality that KI --" AI = 0. 
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3.2.1 Boundary Value Problem for ~bo 

3.2.1.1 Analytic Formulation 

Input Parameters 

The airfoil shape shown in Fig. 58 is given 
max IF[ -- 1, u ,,~ upper surface, ~ ,,, lower surface 

Angle of attack: 

Ratio of specific heats: 7 -" 1.4 

Transonic similarity parameter: ~ -= ~ ; 
~ - M  ~- (or, for Krupp scaling, K = M~----~D~)" 

by y.,t  = tF . , t ( . ) , lx l  < 1, 

Boundary Value Problem 

( K  - ('7 -t- 1)~bo.) ~o.. + ~bo. = 0 (3 - 57a) 

= , 

[~0]~=0 = r for x > 1 

[zl_<z 

[Kutta - Joukowski condition] 

r0  (7 + i ) r  2 Inr cos0 + . - .  
~ 0 - ' - 2 ~  + 16¢2K r 

a s  r - - ,  c o ,  0 _< 6 < 2~r 

r = ~ /z  2 + K0  2) 

(3 - r o b )  

(3-57 ) 

( 3 - m e )  

9.2.1.2 Numerical Formulation 

A rectangular computational grid schematically indicated in Fig. 59 is employed which 
is approximately uniform on and near the wing, with geometric stretching in the far field. 
(There is a capability to adapt the grid spacing on the wing to the airfoil shape, as indicated 
subsequently.) The grid is displaced from ~ - 0 and from the singularities at ( - I , 0 )  and 
(1,0). 

Solution values are stored in PHI(I:IMAX,I:JMAX), with an extra row/colunm for 
the boundary values. 

The airfoil ordinates are input in a table, then interpolated and differentiated (using 
smoothed cubic splines) to get the Neumann body boundary conditions. A parabolic arc 
airfoil and the NACA 00nn series are available analytically. 

Equation (3  - 57a) is solved by successive line overrelaxation (SLOB.), based on tech- 
niques developed in Refs. 31, 33-35, and 42, solving the finite difference equations a line 
at a time, from i--1 to i--IMAX. 
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AIRFOIL GEOMETRY 

I 6ffiAIL L=2 ~ l  

$C37645 

]~ig. 58. Airfoil geometry. 

SO-04.q~C$ 

e , -  

A I R F O I l .  

! 

~-I=LEADE 
/ 

. n m , q  

P,i) 

J:O j:fup 
J : fdn 

I dy (J) 

1~- - I  = TRAILE 

y=~ 
2 
dy- y=-~- 

Fig. 59. Computational grid. 
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Basically, 3-point centered differences are used. The grid can be nonuniform. The 
differentiation formulas employed are: 

h..~ hi h2) ~o,+, lz] _ h2 -h2  h - -  1~0, + h2(hl + ~-z  ~ i+f : ~°" -h, (h,+h2)  ~°'- '+ +°(h2) 

2 2 
~o.., - hx(hx + h2 '4''-~j - ,.,,2r'-z-~°' + 

2 
h2(hl+h2)~°'+~ +O(h2) 

Set #i.j = K - (7 + 1)~b0, ,.i using this central difference. Then # i j  controls the type of 
the equation at (i,j). There are four cases which are tabulated in Table 1: 

Table 1. Type Sensitive Switches Employed by ~b0 Modules 

Pi - l , j  #i,j ! Type of Point 

(i) > 0 > 0 elliptic 
(ii) < 0 < 0 hyperbolic 

(iii) > 0 < 0 parabolic 
(iv) < 0 > 0 shock 

Representation of ( K  - (7 + 1)~o,,) ~o.., 

PL,i~o,,.,~ [central differencing] 
Pi-l,.i~o..,..~ [backward differencing] 
0 [p ~. 0 any way] 
(i) + (ii) 

The representations for Cases (i)-(iii) shown in the table keep the equations stable 
and the marching direction toward positive z. In (iv), Murman's  shock point operator is 
applied. This is consistent with the Rankine--Hugoniot weak solutions at the shock. For 
~b0~i, cAmtral differences are employed, giving a tridiagonal system. 

(i) In [z[ _< 1, i.e., leade _< i _< traile, the Neumann boundary conditions are satisfied by 
the following discretization method: 

Above the wing, at j = fup: 

~o. = ÷o, l j+ , / ,  - ¢o,1~-~/,  + o (Cdy)') 

~oj+~ -¢,oj 
= dU -- ~°¢t'=° specified in B.C. 

dy 

(Similarly below the wing.) 

(ii) In z > 1, Le., i > tralle, there is a branch cut with constant jump 1 ~ in ~0. However, 
~o. and ~o, are continuous across the cut. Accordingly, 

at j = f~p, use (~0,,_, + r) for ~0._, (above cut) 

at j = fdn, use (~b0o+, - I') for ¢oo+t (below cut). 

Once the line i = traile(z = 1) has been solved, the circulation I" is reset to [~b]T~. = 
~traile,fup - -  ~traile,fdn a n d  t h e  f a r  f ie ld  is updated with this new value. The whole process 
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is repeated until ~b0 and r have converged. In practice, Jameson overrelaxation is used, 
together with cyclic acceleration. 

A flow chart of the main program that computes ~0 is given in Fig. 60. Descriptions 
of the subroutines indicated therein follow. Additional information is given in Pigs. 61-64. 

Principal Subroutines 

SOLVE: This calls SLOR, and manages the sweeps across the flow field including conver- 
gence accelerators and is depicted in Fig. 63. 

SLOR: This is tt,~ saccessive line overrelaxation module which solves for the solut]oa 
column vector on 1 =constant lines (see Fig. 64). 

GRID - This sets up the grid data from the user's description (see the file 2D.DOC). 

Output: imax~jmax - size of grid 
z(O:imax+l), y(O:jmax+l) (grid points) 

d=(O:imax-I-1), dy(O:jmax+l) (grid spacings) 

fdn,fup (llnes above and below wing) 

leade,traile (l~osition of leading and trailing edges) 

There is an option to adapt the grid spacing on the wing to the local slope gradients 
of the airfoil. This is implemented by letting dz = b+lF',',(=)l' Here, b is a constant which 

controls the extent of the grid stretching; 2.0 is the defat~t, while b < 2.0 will cause greater 
variations in the spacing and b > 2.0 will cause less. The user can control this by modifying 
the variable "expand" in the control file. The parameter a is adjusted iteratively until the 
grid just fits nicely onto the wing, i.e., z(leade) ffi - 1  -I- ~" z(leade). 

The user gets a summary of the grid and can decide if the computational domain is 
big enough. (With adaptive gridding, it is difficult to tell beforehand.) 

This IMSL routine £ts smoothed cubic splines. ICSSCU is used with a user-specified 
smoothing constant. 

ANGLES-  Calculates two arrays needed for computing the far field value of ~ at the 
boundary. 

0 O = tan -1 VT~  gie = 

FARFLD - Updates the far t~eld using the current value of r .  

= r.angie + I" 2.ffid2 

OUTPUT - Builds two files of results, one formatted (FOROll.DAT) and one unformatted 
(FOR012.DAT) for graphing. 

The data output are Cp and Mach, the local pressure and Mach number distributions, 
where: 

cp = 

1 1 3  
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2D$MAIN ! 

i 
READ CONTROL FILE 

READ OLD DATA |/#,FI IF AVAILABLE 

8C37666 

IS A NEW 
GRID 

REQUIRED? 

NO 

CALL MKFOIL 
ANGLES 
FARFLD 
SETCOF 

CALL SOLVE 

~! CALL GRID I 
I 

i 
YES 

(SET UP THE NEUMANN B.C.) 
Inr 

(CAL(~ULATES 0,'-~" COS O FOR THE FAR FIELD 

(PUT iN INITIAL FAR FIELD) 
(CALC. COEFFICIENTS FOR THE FINITE DIFFERENCE OPERATORS) 

(SOLVE EQUATIONS TO USER'S SATISFACTION) 

CALL OUTPUT (REPORT ON RUN AND WRITE GRAPH DATA) 

Fig. 60. Flow chart for MAIN program computing ~0. 
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| ¢ 3 7 4 9 3  

MKFOIL - BUILDS AN ARRAY CONTAINING THE NEUMANN B C VALUES. Fu.(ix)-A 

CASE 1 FOR AN NACA OOnn AIRFOIL OR A PARABOLIC ARC AIRFOIL THE F VALUES ARE COMPUTED ANALYTICALLY BY 

SUBROUTINE FOIL 

CASE 2 THE AIRFOIL HEIGHTS ARE GIVEN IN A TABLE 

I COMPUTE r - ~AX, .~ - MIN 10J' 

CALL ICSSCV 
IOR 1CSSCU: 

COMPUTE THE SPLINE S 
DERIVATIVES Ohl THE GRID 

THIS IMSL ROUTINE FITS 
SMOOTHED CUBIC SPUNES 
ICSSCU IS US|D WITH A USER SPECIFIED 
SMOOTHING CONSTANT 

BUILD THE B C. 
11~ I~u,r( x | - A I  

Fig. 61. Flowchart of subroutine MKFOIL. 

(j,3J 

| C ] ? | 4 1  

(i.21 

A/ 
L m I ! I ~ m ~ J m 

l i . l l  

I 
I 
I 
I ANGLE (j.41 

I 
I 
I 
I 
I 
I 
I 
I 

Fig. 62. Angular relations for far field. 
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SOLVE 

8C37874 

SOLVES THE TRANSONIC EQUATION BY REPEATEDLY 
CALLING SLOR UNTIL ~ AND r HAVE CONVERGED 
TO THE USERS SATISFACTION 

GET ITERATION COUNT 
FROM USER 

CALL SLOR. 
PRINTOUT MADE IA~l AND r 

IF AT ITERATION n-k 
OR n-2k THROUGH A CYCLE 

SAVE 

ITHIS IS NEEDED FOR THE CYCLIC 
ACCELERATION ) 

IF AT ITERATION n, 
ACCELERATE 

IF NOT 

ESTIMATE THE LARGEST EIGENVALUE 
~1 : 6Tn-k6n/dTn-kdn 
WHERE d n : 4'n'~n-k 

:ELERATE//: ~n "-//n:k +1-~ (~n- ~n-k] 
1-~., 

RECOMPUTE l" 
CALL FARFLD 

Fig. 63. Flowchart for subroutine SOLVE. 
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SUCCESSIVE LINE OVER-RELAXATION 
(ONE ITERATION PERFORMED HERE) 

(NEEDED BY JAMESON OPERATORS) 

8C37663 

I FOR EACH COLUMN 
{ i :  1, IMAX) 

W H E N ~  

NO 

RECOMPUTE r 
CALL FARFLD 

FOR EACH ROW 
U = 1, JMAXI 

WHEN DONE 

EDGE? . ( i :  

:LUDE NEUMANN B.C. 

iNCLUDE JUMP OF r" 

CHECK FOR MAX I6~ljl 

REMEMBER ~i-1 '] 
COMPUTE ~i,j 

|.= K -  (?+ 1)~xi) 

tlLD FINITE DIFFEREN| 
TERMS FOR 

(K - (3'+ 1 )4~xl~xx 
BASED ON SIGNS OF 

~i-l,j AND "i,j 

BUILD F.D. TERMS FOR 
+vy 

THE WING 

SOLVE TRIDIAGONAL SYS:rEM 
BY GAUSSIAN EUMINATION 

I 

F.D. : FINITE DIFFERENCE 

Fig. 64. Flowchart for subroutine SLOR. 
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Mach = 1 - 82/S Mo~ ( K - ('7 -F 1)~,) (This is actually MS.) 

Here, n sad m are the Krupp scaling factors, as used by Krupp, n = - 3  ; m = ~. For no 
scaling, n -- m = 0. 

The graph data also contains the critical pressure, 

C~ -" -262/s K--~Mn 
7 +  1 

above which the flow is supersonic. 

Since Cp is only known off the wing, the graphing program extrapolates linearly to 
find Cp]i=0~: 

~ ,  3 1 
• ~ p , , = o +  = ~Cp1~=~/2,1,,- "~C~,ljfs/2~,,. 

Other subroutines are shown in Figs. 63 sad 64. 

3.2.2 The Three-Dimensional sad Wall Interference Correction ~bl 

3.2.2.1 Anaiytic Formulation 

Input Pin.meters 

The relevant program modules ~reat similar and nonsimilar airfoil section wings mid 
obtain interference corrections for these shapes. A similar plsaform wing is defined as 
one having the same airfoil section along its span but with its chord varying with span. 
The numerical methods employed here are a generalization of those used in ROf. 43 for 
unconfined similar section wings. Remarks on various geometrical aspects are: 

(i) The wing is normalized by b so that it lies in Iz[ < 1. The half-chord c(z) is input. 
For an eUiptic wing, shown in Fig. 65, c(z) = I~/T'-Z~-z 2. 

(;.i) As previously indicated, the small parameter for the expansion is 1 / B ,  where if 
A R  = aspect ratio, 

B = 61/s . b 

L /. 1 where = area of p l ~ o r m  = 6X/3AR. ~ , 

1 f"_' c(z)dz -" 611S A R  " 2 x 

(iii) The wing may be in a circular wind tunnel as indicated in Fig. 66. The parameter 
p = --~ is input as the reciprocal of the fraction of the tunnel spanned by the wing. 
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X 

CHORD 
b 

Fig. 65. Elliptic planform. 

Boundary Value Problem for ~bl 

This is: 

L [ ~ ]  - ( K  - ('r + 1 )¢o , )  ~ . .  - ('r + 1)¢o.  ~ .  + ~ , , ,  = 0 (3 - 5 S , )  

~bl¢(z,0)--0; ¢1 ---~-~(d(z)-I-w(z)) I ' l ( z )0-k . . .  a s r - - . o o  (3 -5Sb)  
2r. 

[~bl],,ffikc = I'l(z) -- [~1]T.~.. , T.E.... TRAILING EDGE ( 3 - 5 8 c )  

Here, d(z) and w(z) are crucial functions controlling the size of the aspect ratio and wind 
tunnel corrections, respectively. They are given by the integrals 

dCz) = ~ , 7-~_~d~ 

( f  = principal value integral) 

(3 - 59a)  

~n/~ r0(~) 
w(z) = 4-~-~ I (z~ - p2)2 d~ (3 - 59b) 

The quantity w(z) in (3-59b) has been obtained from the far field analysis of Sections 3.1.1 
and 3.1.2, and the (-t-) and ( - )  apply to free jet and closed wall test sections, respectively. 
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WING IN OPEN JET TUNNEL 
$C3764| 

b ~ 1  
- I 

Fig. 66. Front view of wing confined in circular wind tunnel. 

Now, taking advantage of the assumption of similar sections*, let 

~o=cC~),~oCX, Y); X=-ci~; Y=-.~) ; 

which gives the reduced problem for ~bo 

( x - C ~ + l ) ¢ , o x ) ~ o x x ~ - C o y ~ = 0  ; ¢o,,Iy=o=GxCX); [ ¢ 0 ~ ] ~ = 0 .  ( 3 - 0 o )  

The problem (3 - 60) has no explidt dependence on z. From ~bo = qb0(0), its solution is 
obtained as 

¢oC~) = ~(~)¢oCO) ; rock) = cC~)roCO) 

Use of a similar scaling for dl for which qbl = (d + w)c(z)~bl (X, Y), gives 

( K - ('y + 1)~bOx ) ~ ' l xx  - ('7 + 1)~bOxx ~l',x + ~b, vY - 0 (3 - 61a) 

r~ 0 ¢ l ~ = 0 i n l X l < l  ; [¢ ,~ ]x= ,=0  ; ¢1 ~-Y-~-~= -I-'-" (3-61b) 

* Nonsimilar sections will be treated in Section 3.7. 
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A modified form of (3 - 58) is useful to regularize the far field. For this purpose, part of 
the known far field is subtracted off and ~b* = ~l + Y is solved for. The resulting boundary 
value problem for ~* is 

( K  - (~  + 1)~b0x(0)) ~b~x - (7 + 1 ) ~ O x x ~  + ¢~,9 = 0 (3 - 62a) 

~ylf'=o = 1 in IXl  < 1 ( 3 - 6 2 b )  

~ * - - * - 2 ~ 0  as r ~ c o  ( 3 - 6 2 c )  

[~b*]w~k e = r* = [~b*]T.~.. ( 3 - 6 2 d )  

The actual solution ~x is then obtained from 

where now 

~1(,) = (d(~) + wC,))(c(z)¢ + y) 

r ,c , )  = (dCz) + ~(,))c(,)r* 

(3 -- 63a) 

( 3 -  63b) 

r 0 ( 0 ) / f  d(~)d~ w(z) _ F 0 ( 0 ) p 2 / f  c(~) 
d(z) = - ~  1 z -  ~ ; 41r I ( z { -  p2) ' 'd{ (3 - 63c) 

Within the problem give~x by (3 - 62), the position of the shock is kaown, having been 
captured by the ~o solution. It is therefore natural to fit its perturbation into the ~a 
problem by using the shock jump relations to provide a set of internal boundary conditions 
as in Section 2. These are: 

[¢] 
[a~,] - ~, [~:] + 2~ [~;] = - 4  [÷0.] 

/~ = K - (7  + 1)~0. 

= [4,o,] /[~o.1 

(3 - 64a) 

(3 -64b)  

(3 -64~ )  

wh~e 

and 
" = t~ ~ [~o. . ]  - h ~ o . . ]  - 2 ~  [¢0 . , ]  (3  - 64d)  

are known from the ~0 solution. 

3.2.2.2 Numerical Formulation 

In the solution for ~*, all of the other scalings are applied only at the output stage. 
The various dements are calculated as follows: 

(i) dC~) 

' ~  ra~)  d~ - ro(0) "'4:- e(~) a~ (3 - o5) 1 
d ( z ) -  ~"~ J - ,  z - ~  4~r j _ l  z--~-~ 
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The simplest case is for an elliptical planform, c(z) = V~ - z 2. Then, 

d ( z ) -  ro(0)/4 (s - 66) 

Otherwise, the trigonometric substitution 

z = - cos 0 (.~ - 67) 

is used and the planform shape is represented by the sine series 

c(z)  = ~ A .  sin nO 
n----1 

The integral (3 - 65) then becomes 

o o  

d(~) -  r0co) z ~ n A ~ s i n n S  (3 -68 )  
4 sin0 

It---~l 

In practice, c(z) is given at a series of span stations. The transformation (3 - 6"[) is used 
and a cubic spline is fitted to c(z). It is evaluated at 0 = 27r~, where m = 0 , . . .  n (say), 
and the A= are then computed with a discrete Fourier transform. 

This ~.orks well for smooth, near-eUiptical planforms, but for others (e.g., sharp cor- 
nered wings such as rectangular and delta planforms), d(z) may have singularities which 
n ~ d  further treatment. 

(ii) w(z) 
p2 "'/_' r0(0 df ( 3 -  69) w(z) - ~ - ~  1 ( z ~ -  ~2)~ - 

Here, p > 1. Therefore, the integrsad is finite everywhere, and a straightforward quadra- 
ture using the trapezoidal rule seems perfectly adequate. 

(iii) Solution for ~b* (Shock-Free Case) 

In the solution of (3-62),  the grid sad ~o are input from some previous run which used 
an identical computational grid. The coefficients ( K - ( 7 + l ) ~ 0 . ) ,  (7+l)~b0.. are computed 
using central differences in elliptic regions, and backward differences in hyperbolic zones. 
The parabolic value zero is used for K - (7 + 1)~0. at a subsonic to supersonic transition. 
This keeps the system stable. The subsonic and supersonic regions are already known from 
the ~0. Apart from this, the solution proceeds in the same way as for ~0. 

The initial guess for ~b* can be ~b* - 0, an old solution, c¢ an analytic solution to the 
Prandtl-Glauert equation. Since ~b0. and ~b0.. -4 0 as r --* co, 

K~:,  + ~;j = 0 
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will be a reasonable approximation, at least in the subsonic case, with the boundary 
conditions (3 - 62b)-(3 - 62d). This '~aAat plate" problem can be solved analytically with 
the following resealing 

1 1 

V / t  v ~  

tO give 

v'/ + 

I, V Z - Z  ) 

(z = • + id-g~) 

To evaluate (3 - 70), the re!lowing branch cuts may be used: 

( s -  70) 

0 < R q - ~ 2 ~ r  , a r g ( Z - t - 1 ) - 0 -  ( 3 - 7 1 a )  

arg(Z - 1) -- 0+ , (3 - 71b) 

where 0+ and O_ are shown in Fig. 67. This solution has F* = - ~ ,  which is not too far 
from the value obtained from a numerical solution of (3 - 62). 

IC$7635 

ARGUMENTS FOR 
• • f  

e+ 

- 1  0 1 

Fig. 67. Arguments used in Eq. (3 - 70). 

(iv) Treatment of Shock Conditions 

From Refs. 29 and 32, the shock equations me: 

{[~o] = 0 (s-72~) 
Zeroth order [K~o, - z2~-~o2.] [~bo.] + [~bo,] 2 - 0 (3-72b) 

First order{ [ # ~ ; ] - / / '  [**] + 2~E*]] = gx{~' [ , 0 . . 1 -  [ / ~ , 0 . . ] -  2~[,0. ,]  } (3-78a) 
(S-TSb) 
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where ~_ = K - (q, + 1)@0., ~ = ~ ,  and z = gl(Y)  is the correction to the shock locus. 

Eliminating gl and using the zeroth order equations yields 

[~,~;]- ~' [~;1 + 2~[~] =-A,[~o: ~ ( 3 -  74) 

where A - -  ~2 [ ~ ,  ] _ [ /~0. .  ] -- 2~ [~0.g ]. This is the governing equation for the ~* shocks. 

The shock is fitted over three mesh spacings m empirically, the numerical width of the 
captured shocks. If ~i-2,j < 0 and ~i-l , j  > 0, then the two sides of the shock notch are at 
( i , j )  and (i - 3,j) ,  respectively, downstream and upstream as shown in Fig. 68. The case 
when not all shock points lie between the same two grid points will be considered later. 

The coemcients/~I, /~1-s, /~, and A are all evaluated by taking differences of the 
quantities evaluated at I and I - 3. 

The solution proceeds normally up to and including i - I - 3. At that line, all the 
points on the notch will be either hyperbolic or parabolic. Accordingly, the difference 
equations wiU be numerically explicit. 

Lines Z -  2 and I - I are solved normally above the notch; values for (I  - 2,~smaz) 
and (I  - I, ~smaz) are extrapolated linearly from either side, under the assumption that 
the jump falls entirely between I - 2 and Z - I. This is indicated schematically in Fig. 69. 
The shock strength is assumed to vanish at ~srnaz. 

At line I, ( 3 -  74) is used to provide equations for points fup to jsmaz; ~ - jsmaz-b 1 
to jmaz  are treated normally as interior points in the usual manner. In ( 3 -  74) the jumps 
are computed from 

[(-)] = (.)., - (.)I-~ (3 - 75) 
In the treatment of the jumps of the derivatives, 

~*_! uses a two point forward difference, ~z.~.J-~i.i (~=)! 
~*I-s uses a three point backward difference, 

e.g., ~ ( 8 ~ _ ,  - 4 ~ _ ,  + ~ - s )  (for a u~iform ~rid). 
1 ~ uses a three point centered difference, 2(-~'~(~I,,+I- ~I,j-1) (for a uniform ~'id) 

At j -- fup, the known Neumann boundary condition on the 1/2 node of tangent fiow 
on the wing is used with the following average of point values, recognizing that the body 
is at a 1/2 node point. 

$ 1 ~ s 

Because ~ - I everywhere on the wing, it cancels out in [~ ] .  Thus 

[~]~=~.~ = o (3 - 77) 
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I-3 I-2 I-1 I I<-1 

8C37eII4 

SHOCK NOTCH FOR 
FITTED SHOCK 

]- jsmax 

j,, fup .,jsmln 

Fig. 68. Orientation of shock notch. 

1~$7636 

EXTRAPOLATION OF 0* FOR JUMPS 

_s"1 
* * $ I  - ~ " ' ~ . .  7 EXTRAPOLATED VALUES 

I-4 I-3 I-2 I-1 I I +1  

Fig. 69. Linear extrapolation at shock. 

This approach gives a full tridiagonal system of equations for line I .  Once solved, the 
solution proceeds normally at line I + I. 

The shocks captured in the ~0 solution are not always vertical. It is unlikely that the 
sonic line will stay between the same two I values for the entire shock. There seem to be 
three options when this occurs: 

(i) Use a wide notch so as to cover the whole shock (see Fig. 70a). For strongly inclined 
shocks (not typical of the transonic case or coarse grids), some of the information on 
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the computational grid will be lost. Also, differences (i.e., [6*]) would include more 
than just the shock. This has the advantage of logical simplicity and is incorporated 
in the slender body code. 

(ii) Use a one point notch which follows the shock (see Fig. 70b). Here we would use 
direction-sensitive differences for 6~ and stencils that look like ( ~ or ~ ). To get the 

three mesh spacings. This could be somewhat inconsistent for. some points (such as 
Column I) which would be using coeffidents from the middle of the numerical shock. 

(iii) Use a three point notch which foUows the shock (see Fig. 70c). This avoids some of 
the problems of (ii), but has some of its own, e.g., how to calculate ~b~ at points like 

(~) and ( ~  . Central differences (as currently used) would require ~b* values from 
inside the notch. These could be obtained by linear extrapolation in z, as explained 
earlier, but this introduces errors of at least O(h), and possible inconsistencies. 

This is the method currently implemented. Perhaps a better way to calculate ~ 
would be direction-sensitive one-point difference as in (ii). Here, one point forward on 
the fight (downstream) side and one point backward on the left for backwardly inclined 
shocks and the reverse for forward inclinations. 

(v) Output 

The total lift L is given by 

. ~2/s rl 
z = pV~b-M--~- / r(z)dz 

oo J - - 1  

and I'(z) = total circulation 

Then, 

, where b = semispan (3 -- 78) 

1 
= r0Cz) + ~:(dCz) + wCz))r*(,) 

CL-- veV~Sw (Sw Lc) = area of wing = 2b (z)dz 

6'Is (/__ 1 ' ) 1 
M ~  r(z)dz fl_, c(z)dz 

6,/s ro(o) f_' x c(z) [1 + -~(d -[-~)r*]dz 
M~ f_l a c(z)dz 

(3-79)  

(3  - 8o)  

for the similar sections case(3 - 81) 

where d a_~ _ ~ for an elliptic planform. For the free field case, 
- - "  I ' 0  

C,,-M~oVo(O) 1 + ~  , B =  .AR.~  

= 51/s • A R .  "~ for an elliptic planform. 
(3 - s2) 
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WIDE NOTCH 

I 
,, 

IIC:I)O,S2 

Fig. 70a. Wide shock notch. 

ONE POINT NOTCH 

! 

liC$'/643 

Fig. 70c. Three point shock notch. 

Fig. 70b. One point shock notch. 

THREE POINT NOTCH 

\ 

Q I 

® 

8~7~4 
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Other quantities, such as the corrected pressure on the wing at a particular span station, 
can be similarly calculated using 

1 
= ¢0 + ~ ¢ 1  (3 - 83o)  

cp = -2~2 /s¢ ,  (3 - 83b) 

3.2.2.3 Program Operation and Flow Chart 

Many of the modules in PHI1 hate the same function and implementation as in 2D. (In 
fact, SOLVE, ANGLES, and FARFLD are used directly by both programs.) Accordingly, 
only the substantial changes are discussed here. 

Principal Subroutines 

PHI1 

Functions: 

Read control file. 

Read zeroth order results. 

Read ~*,r* ff available. 

Initialize ~* (method controlled by user). 

(i) to o, ¢* = r* = 0. 
(ii) to the solution of K~*..z + ~ u  - 0, by calling PHILAPL. 

(iii) to an old solution. 
Call WINGSC to compute the span scaling function d(z). 

If p # 0, call TUNLSC to compute w(z). 
Call SETUP to compute partial differential coefficients, and the shock relations. 

Call SOLVE to solve the $I boundary value problem. 

CaB OUTPUT to write graphics and informative results. 

Write $* and I ~* to OUT.FILE, if requested. 

Stop. 

WINGSC m Computes d(z); see Section 3 . 2 . 2 . 2  ~i) .  

The wing profile is read from WING.FILE, which should consist of (z, c(z)) pairs, one 
per line. This is extended, first to form a symmetrical wing, and then a periodic function, 
as shown in Fig. 71. 

z is mapped into 0 via z = - c o s  0; 0 _< O < 2~r. A periodic cubic spline is fitted in 0. 
The idea is that wings may often look like V~ - z 2 near the tips; the transformation will 
remove the singularity in d(z)  which will help to provide a more accurate spline fit in this 
neighborhood. 
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The spine is evaluated at m equally spaced points in [0, 21r) where m = 2n, n = 
number of input and extended points. (Too many would start to fit wiggles in the splines; 
too few will not give enough Fourier coefficients.) 

These values are used to compute a discrete Fourier transform of c(0). 

The downwash integral ~ f_l 1 c'(O,/~ (Eq, (3 - 65)) is then evaluated. ~,lm~ ~ 

f:! d(z)C(z)dz 
These values of d(z) are then used to compute wetfect = f_~ c(z)d, by trapezoidal 

quadrature. 

"weEect" is the relative lift contribution due to aspect ratio (see Section 3.2.2.2 (v)). 

T U N L S C  - -  Computes w(z); see Section 3.2.2.2 (ii). 

The wind tunnel ratio p is an argument (variable urn); the integral is calculated by 
the trapezoidal rule on a 51-point grid on [-1,1]. 

f_l w(z)c(z)dz 
The integral reflect -- f-~l c(,)dz is calculated similarly to weffect. It is the relative 

lift contribution due to wall interference (see Section 3.2.2.2 (v)). 

SETUP - -  Calculates various codilcients used in the Cz boundary value problem and shock 
relations (see Fig. 72). 

Principal Variables 

CX(1 : I M A X ,  1 : 3) Computational molecule for first z derivative (centered). 

-h2  h2 - h i  h i  

C X ( I , I : 3 )  = h2(hl + h , )  ' hlh,  ' h , (h,  +h~,)" 

C, X X ( 1  : I M A X ,  1 : 3) Molecule for second z derivative (centered). 

2 - 2  2 

C ' X X ( I ' l : 3 ) - h l ( h l + h , )  ' h--~ ' h , ( h l + h , ) "  

PX(1 : J M A X ,  1 : J M A X )  Values of K - (7 + 1)~o., calculated with 

m central differences in elliptic regions 

- -  backward differences in hyperbolic regions 
- -  parabolic (i.e., P X  - O) at the elliptic to hyperbolic transition 
No shock operator is used at the hyperbolic to elliptic transition; since it is handled 

by the fitted shock). 

P X X ( 1  : I M A X ,  1 : J M A X )  Values of (7 + 1)O0.., using central/backward differences. 

SHK(1  : J M A X )  Relates to the fitted shock. 
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S H K ( J )  - I Denotes the position of the downwind side of the shock notch at line I as 
indicated in Fig. 73 and - 0 if there is no shock at that line. 

J S M I N ,  J S M A X  denote the j-limits of the shock. If the shock is only above the 
wing say, J S M I N  = FUP. If there is no shock at all, J S M A X  < 3SMIN .  

The second part of SETUP evaluates various jumps and codlicionts across the shock: 
and prepares them for the treatment of the numerical shock jump equation. Suppose 
~'HK(J) - I. Then: 

a = [~0.] = ~:I  -- ¢,1-3 (central di~erences) 

b =  #. 
._ ÷~l-~s-a 

~g 

For this quantity, ~ is calculated using central differences away from the wing. On 

it, the known boundary condition, i.e., ~,, = ~ [~ "I ~,0] -~t~t ~,e given is employed. 

c----/gz [~bo,.]- [P~0 , , ] -  2~[~b0.,] *-* A, where p -  K - ( 7  + 1)~0, - P X .  

From these quantities, eight coefllcients are stored in s common block for SLOR to 
access 1,~ter. These are: 

CJMP(J ,  1 : 3) = 2~. CY(J, 1 : 3) The molecule for 2~b1, 

CJMP(J,  4) = A~ [~0.] = 

CJMPfJ ,  '6) = 
• ~ l . l . l - - Z s  

CJMP(3,  6 : 8) The computational molecule for Pl-a~l . : -e  + T ~ ¢ l z - a  

The differencing used here for ¢1. is backwards and has error O(h2), not O(h).  

I - 5  1 - 4  1 - 3  

The coefllcients of ~bx-s,4,3 are: 

hi 

h~ hi 

- ( h i  + h2) 2h2 + h2 
' hlh2 ' h i ( h i  

With these eight coefficients, the shock relation 

is represented as 

CJMPx~bl,j-1 + CJMP2+4-5~bI,~ + CJMPa~I,~+I = CJMPe,7,s" fb(l-s,4,a)j 

- CJMPs~,~+xj + CJMP1,2,s • ~bI-s,v 
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c(z)_l 0 ~ ~ t  . / 
3n/2 2n 

8C:17e49 

D - -  INPUT DATA FOR - l < z < 0  

0 -- EXTENDED DATA 

Fig. 71. Periodic extension of planform. 

|C|TlaP 

Pig. 72. Computational 
molecule ,2sed in SETUP. 

k2 

hl 

!/Ii,jl 

.Mo 

h2 

J + l  

J 
I-3 

HYPERBOLIC ELLIPTIC 

1 
I I 

I I 

I I 

I I 
I-2 I-1 

~ T U l  
i 
i 
I 

z 

Pig. 73. Pre and post shock 
sides of shock notch. 
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where U can equal J - 1, J ,  or J + :1. 

As before, ~ at J = FDN or FUP is computed using the Neumann boundary 
condition ~b~[~ffi0 -- 1 (see Section 3.2.2.2 (iv)). 

PHILAPL (z, ~, V ~ )  calculates the analytic solution to the Prandt l  Glauert "fiat plate" 
problem (PG1) K~bffi= + ~bi# = 9; ~b¢ = 1 at ~ = 0 , 0  <_ z _< 1; ~ --* -2~-~ as r ~ co at the 

point (z, ~), with 0 - tan -1 v /K~/z  • and r 2 = z 2 + K~ 2. 

If Z = z + iY, with Y = . /~ f i ,  .then the solution is obtained from the incompressible 
map (IPG1) of PGI:  ~ b z = + ~ ' Y  = 0 with ~b -* ~frtan-lY_ffi as z 2 + Y 2  __, co and 
~y(=,O) = ~K'  0 < ,Z < ]. "/'I~s is:: 

= R e F ( Z ) - - ~ I  Re - i Z + v ~ - Z  2+2tan-1 V 1 - Z  ' ,/-g 

_ 

(see 3.2.2.2 (iii)) 

(3 - s4) 
Equation (3 - 84) is obtained from integration (Ref. 44 195.04) of the complex velocity 
for IPG1, F'(Z). Thus, 

r ( z ) = ~ - ~ = i  Y T  1 . 

u = ~ , ( ~ , Y )  , ~ = ~ y C z , r )  

(3 - s s )  

The real and imaginary parts of (3 - 85) give 

- - 0 - )  

(3 - s e a )  

( 3 - S e b )  

where 

o~ = arg(z  ~ t)  , 0 < ars ( . . . )  < 2¢ (3 - s T a )  

r~ = mod(Z ~ 1) (3 -STb)  

Equation (3 - 84) indicates that  P = -21r for the Neumann boundary conditions assumed. 
Equation (3 - 86a) exhibits the square root infinity in the perturbation pressure u near 
the leading edge (r_ = 0), and the fulfillment of the Kut ta  condition [u] ffi 0 at the trailing 
edge r+ = 0. These features as well as the satisfaction of the boundary condition on Y -- 0, 
0 _< z <_ 1, can be ascertained from (3 - 87a). 
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In the notation of the subroutine, 

arg I ~ arg(g + 1) = tan-1 (z--~--~) 

T H E T A  ~ ~(arg 1 - arg 2) = arg 

1/1/1/1/1/1/1/1/1/~ 2i " "  1 - i g  ~ Quantities used to compute Re tan -1 V ] : z '  where t an- :  Z - 1_ ] .  ~ Re( tan- | )  = 

g arg are: 

a +-* ~ - ~  i.e., ~ - ~  "- ae i 'THETA , 

• 1 + Z - a  s i n ( T H E T A )  + i d c o s ( T H E T A ) ,  b e+ s --~1~ -" 

l + b  
1 - b '  
1 , 

a tan ~ ~ arg(b ), 

1 T H E T A I  *-- ~(arg 1 + arg 2) (So that V/1 - Z ~ = cc i 'T t tBTAI)  

These results give, 

1 { y  + c .  cos (TH~TAI)  + 2.  a tan +=} 

Figure 74 outlines the post processing operations and Fig. 75 indicates the subroutine 
SLOR. 

3.2.3 Convergence Acceleration 

Slow convergence can occur for lifting cases. This is marked by the error 

eh = m a x  I ~  - ~ k - l l  

becoming small although the solution is far from its limit value. 

One possible acceleration technique developed in Ref. 45 uses estimates of the largest 
eigenvalue(s) of the error matrix to guess the limit. If these eigenvedues are ~I > ~2 > "" ", 
then 

= ~t + 1 -  ~ 
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OUTPUT -- WRITES 2 FILES OF RESULTS FOR014.DAT WHICH REPORTS 
ON THE RUN AND FOR01B.DAT WHICH 18 UNFORMATTED 
AND CONTAINS GRAPHICS DATA 

I COMPUTE SCALING FACTORS ,0R X.U'P SCALI"O..---:4. m - 4  
SCALCP ,ffi - 2d  % M - n  

8CALM = d % M m FOR "NORMAL" SCALING, m ,= n ,: 0. 

EXTRAPOLATE 6 AND 4" ON TO 
y ,: 0. UNEAREY 

COMPUTE CP0 AND CP1 

(= BCALCP ®x I 
ATy f f i  0 

LINEARLY INTERPOLATE 
FOR CP1 AT THE NOTCH 

FOR j = jsmin TO jsmax 
GET glIj)ffi - [4P']/|~oxl 

SECOND ORDER EXTRAPOLATION IS 
PO881BLE USING SOLUTION VALUES OF 
}yly " 0 BUT 18 NONUNIFORMLY VALID AT 
LEADING AND TRAIUNG EDGES. 

ANOTHER pOSSIBILITY 18 TO PUT THE 
JUMP ALL IN ONE PLACE AS IN 2(iv| 

COMPUTE LIFT 'COEFFICIENTS : [ C L - d2/31"0 • - " [ oTH ORDER ANO AOJUSTED FOR I ~0  C- '1 ÷ (wemcT*  ~FECT~ 
[ An AND WING TUNNEL EFFECTS, ~ - ' 1 "  " 0 '  ~ S ! r ' }  

" ~ . 

MACHO " - d 2/3- (K - (y+ 1)//0x| 
AMACH1 " ~2/3 0'+ 1 )~  

COMPUTE 0 TH ORDER AND 
CORRECTION MACH 

NUMBERS 

WRITE DATA TO FILES 

RETURN 

Fig. 74. Flowchart of postprocessing elements, (repeated as Fig. 89 ) 
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SLOR - PERFORMS ONE LINE OVERRELAXATION ITERATION ON THE FIRST ORDER CORRECTION 8c37s7° 
TO THE TRANSONIC SMALL DISTURBANCE EQUATION, 
IK-ly + 1)#ox)}" xx-lY + 1Noxx)" x + } °W '~ 0 

SAVE CURRENT SOLUTION 
OLD "- PHI 

FOR EACH COLUMN; 
(I- 1, i MAX) 

FOR EACH ROW: 
IJ" 1, J MAXI 

AWAY FROM NOTCH 

ISET UP REGULAR JAMESON I I SET UP DUMMY EQUATION | I 
[EQUATION IELLIPARB/HYP} TOI | IUNEAR EXTRAPOLATION | I / " " - - ' * " ' . ÷ " - ' °  i I FROM NEAREST SIDE) I 

WHEN DONE 

ARE WE ON THE WING, 
AND AWAY FROM THE 

NOTCH? 

ARE WE DOWNSTREAM 
FROM THE WING AND 

THE NOTCH? 

SOLVE THE TRiDIAGONAL 
SYSTEM 

COMPARE THIS POINT 
TO SHOCK NOTCH 

AT SHOCK 
POINT 

SET UP SHOCK JUMP 
EQUATION. I~'y] TERMS 

DEPEND ON IF ON THE WING 

ADJUST EQUATIONS FOR S.C. 
+k .1  

ADJUST EQUATIONS FOR CUT 
[ ) ' )WARE" r -  

AT TRAIUNG EDGE? 
IOR, IF NOTCH OVERLAPS, 

EDGE + 17) 

R E ~ M ~ r E  r - I#ITE 
CALL FARFLD 

RETURN 
CONTINUE SOLUTION 

OF COLUMNS 

Fig. 75. Flowchart of subroutine SLOR. 
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is the formal limit, where/~k is at most of order )`~. 

There are several ways of estimating )`. Three of these are give~ below as )`I, ] I ,  and 

~z, where 

I~b~+l -- ~ l  (where ~* is ~b evaluated at some fixed referenc~ point) 
)`1 = J~I - ~I- ~1 

~ ,  = ~ l~k+, " '/'kll ~ 14'" - ,/,k-t1 

" T - T  ~ .  = 6k,~,.+~l,~k 6~, , w h e r e  ,h, - ,/,a, - ,/,I,-i 

hi our experiments, ~1 seemed to be best: )`1 is sensitive to roundoff and the choice of ¢~*, 
while )̀ "1 seemed tn be frequently greater than 1. 

Implementation: We use cyclic acceleration with cycle length k (typically 12-16) 
based on iterates m apart (typically 2 or 4). k iterations are performed normally, then an 
acceleration performed via: 

~ I  "2" ' T ~k-m6k/6k-m6k-m ; 
~k - C t - .  

1 - ) ` i .  

Then the cycle is repeated. 

"Acivautages of Method 

As indicated in the Results section, the acceleration method in the long run helps 
convergence greatly. 

By giving the solution a "kick" every k iterations, it stops it from being trapped 
in a local near-solution well. 

Disadvantages of Method 

- -  As the mesh spacing -* 0, )`1 --* 1. In practice, ~1 > 1 can occur. In this case, 
we set ~I = .985 (say) which upset the solution in some cases. 

m The accelerated ~ does not satisfy the difference equations. The process may 
move ~ and r as a whole closer to their limits, but then most of the next cycle is 
wasted getting back to a' near-solution of the difference equations. This can be 
inefficient and frustrating. 

Improvements of the process seem feasible, using a higher order method, i.e., estimat- 
ing )`2, ),s, etc., which could concelvably eliminate both the above disadvantages. 

However, since the underlying equation for ~0 is nonlinear, there are some limitations 
of the method. Convergence could require moving the shock, straining the applicability of 
the linear method. 

136 



AEDC-TR-91-24 

3.3 Results for Subcritical Interference Flows 

Figure 76 indicates the power of the convergence acceleration method for calculation 
of a supercritical Moo = .75, c~ = 2 ° flow over a NACA 0012 airfoil on a relatively fine grid. 
Without acceleration, the circulation has not converged at 500 iterations. By contrast, the 
acceleration method provides impulsive corrections to achieve almost the asymptotic value 
of the circulation within the same number of sweeps. The relaxation parameter w was set 
equal to 1.7 for these calculations. 

Computational studies of the wall interference effect were made on similar section 
wings. Figure 77 indicates chordwise pressure distributions associated with the dominant 
two-dimensional term $0 at Moo = .63 and a - 2 ° (solid curve) for a NACA 0012 airfoil 
wing. This variation has the characteristic leading edge singularity. At higher Mach num- 
bers, clustering the grid near the leading edge was important in achieving convergence. 
The relative corrections associated ~vith finite aspect ratio and wall interference ($I) are 
also shown for the same set of flight conditions for an aspect ratio (AR) = 8 elliptic plan- 
form. The dotted curves indicate the free field finite aspect ratio chordwise distributions 
on upper and lower surfaces and the dashed lines denote the additional wall interference 
effect for a circular open jet test section using the far field correction worked out in Sec- 
tion 3.1, given as Eq. (3 -59b)  herein. In the figure, (7~ denotes the critical pressure level. 
A mean value (Tp . . . .  is shown for (Tp in which 

c,. , . . .  = $'--' c(z)C,d,, 
f l  I c( ,)d,  

The parameter p is the reciprocal of the semispau in units of the tunnel radius. 
Accordingly, the case indicated in Fig. 77 corresponds to a semispan of 95~ of the tunnel 
test section radius. In agreement with the assumptions of the asymptotic method, the 
wall interference correction for this case is numerically of the same order as the free field 
three-dimensional correction associated with finite aspect ratio and the induced angle of 
attack con'ection of the trailing vortex system. The correction appears to peak near the 
leading edge and is greater on the upper surface of the wing than the lower at this positive 
incidence. 

The associated isoMachs for this case are shown in Figs. 78-80. Figure 78 indicates 
these lines for the zeroth order two-dimensional solution. Figure 79 shows those corre- 
sponding to the incremental effect of aspect ratio and wall interference associated with $I. 
The resultant field is shown in Fig. 80. In Fig. 79, it is interesting to note the persistence 
of the leading edge singularity of the $0 field in the isoMach pattern. 

For the elliptic planform of Fig. 77 at Moo - .63, and a = 2 °, Fig. 81 shows the 
variation of the chordwise pressure distribution along the span due to the combined effects 
of wind tunnel wall interference and finite aspect ratio. Analytical evaluation of (3 - 59b) 
specialized to the case of the elliptic planform fully spanning the tunnel (p = I) indicates 
that there is a square root infinity in the span load distribution at the blocked wing tips 
at their intersection with the open jet or solid wind tunnel walls. This trend persists for 
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the p = 1.05 case, since the wing almost spans the tunnel. Accordingly, the chordwise 
pressures are almost identical at stations over most of the span, but change drastically at 
the tips as shown in Fig. 81. B~udies of ~/J  ~ype for the aupercrilica! caJe could guide the 
hoiJ~ of ~he ~ving ~o ac/de~e effective flee jle/g condition5 in ~e  tunnel. 

Associated with these pressures are the spanwise load distributions shown in Fig. 82. 
The ordinate is the sectional lift coefficient along the span normalized to the two- 
dimensional w0ue for Moo - .63 and a - 2. Also shown is CL/Cr. o, the total wing 
lift coefficient corresponding to the separate and combined effects of finite aspect ratio and 
wall interference normalized to the two-dimensional value. Here, the forementioned exsg- 
gerated tip effect is evident and is connected to the wall interference. For this 95% spanning 
of the test section, both effects combine to give a reduction of the two-dimensional lift 
by 42%. 

The effect -.J planform shape on these sectional lift distributions is shown i~ Fi~;. 83, 
where the chord variation 

cCz) = (1 - z~) ' / '  

is considered at the same conditions as the elliptic one of Fig. 77. In contrast to the 
constant downwash effect of the trailing vortex system for the elliptic planform, the free 
field finite aspect ratio correction now also shows a variable twist effect along the span. 
For the elliptic wing, this was associated only with the wall interference. It is interesting to 
note that in spite of this, the n u ~ t u d e  of the total lift reduction due to combined Finite 
aspect ratio and wall interference is still approximately the same as that for the elliptic 
planform. 

Supercritical shock capturing will be described in what follows. Of interest in con- 
nection with the shock fitting required for the qbl solution is the %rispness" of the shocks 
captured by the ~0 solution. Figures 84 and 85 show pressure distributions along various 
lines j - 1, 2, 3 , . . .  , j M A X  for coarse and fine grids, respectively. Figure 85 indicates that 
our algorithm captures the shock over 2 to 3 mesh points. In Fig. 86, the relationship of 
the jumps to the Rankine Hugonlot shock polar is shown. If ul and vl represent preshock 
reference states, the abscissa and ordinate used for the figure are respectively 

_- + 1)C  - u, , )  

+ 1)u  - K 

3 } s/' 
4 ('1, + l )ul  - K ' 

where u - ~0,, w = ~0~ and K is the transonic similarity parameter defined previously. 
The various curves progressing from the ~ axis upwards each represent the variation of 
with # along ~ = constant lines, starting with a ~ level closest to the airfoil and moving 
upwards in unit increments of j .  The sharp break in the curves near the non-diffused part 
of the shock occurs at its downstream side. The proximity of the kink location to the polar 
is a validation of our algorithm to capture the proper Raukine Hugoniot jumps. 

As indication of the effectiveness of the grid clustering employed, Fig. 87 shows iso- 
Machs for the more supercritical NACA 0012 flow corresponding to Moo -- .8 and a = 2 °. 
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Formation of the recompression shock on the rear of the airfoil is evident in these pattens.  
The horizontal and vertical grid clustering employed are shown near the frame of this plot. 

3.4 Supercritical Interference Flows 

In Fig. 88, a result is shown for a supercritica] interference flow. This calculation 
represents the chordwise pressures over an aspect ratio 8 elliptic planform which spans 
90% of a circular wind tunnel. The wing is at 2 ° angle of attack, at a tunnel Mach number 
of 0.7, and has similar NACA 0012 airfoil sections along its span. The effect of the open 
jet and aspect ratio is to weaken the shock as anticipated. 

In the treatment of these supereritical flows, the numerical methods were refn~d so 
that the shock fitting methods can adequately handle stronger supercritical cases associated 
with Pig. 88. Two issues dealt with in this connection are the ~* shock fitting procedures 
and the treatment of the surface boundary conditions. 

In connection with the shock issue, it is useful to note that in practically interesting 
cases, the shock is almost vertical and the regicm about it can be contained with a vertically 
oriented boundary ABCD as shown in Fig. 68. The zone inside the "shock notch" ABCD 
is a "hale" for which it is not necessary to compute the interference potential ~ ' .  On the 
other hand, a staggered boundary of a mesh width of three points shown in Fig. 70c can 
also he used to satisfy the appropriate jump conditions across the shock. The configuration 
of Fig. 68 is advantegeous from the standpoint of programming logic, particularly in the 
treatment of jumps in ~ ( [ ~ ] )  so' that differentiation inside the notch is avoided. The 
disadvantage is that the shock r e ,  on may be unnecessarily widened. However, for nearly 
vertical shocks associated with Mach numbers close to unity and fine grids, this disadvan- 
tage can be o / ~ .  The three point staggered notch has the advantage of following the 
shock contours. 

Subroutines SETUP and SLOR have been optimized so that numerical treatment of 
the staggered and upright notch can be built into these modules. SETUP is a subroutine 
that calculates the ¢oei~elents needed in the variational (I st order) equation from the 
zeroth order basic flow solution. It is used in subroutine SLOR and also detects the shock 
as well as finding the coeflleients ~ the I "t order jumps. SLOR, is depicted in Fig. 75. 

Other capabilities that are included in the code are adjustment of notch width and 
batch capability. In regard to the former, the adjustment can be made asymmetrically in 
the streamwise direction to model the shock layer adequately. 

In regard to the boundary conditions, boundary points are bandied by averaging the 
slope information on the boundary with that at the immediately adjacent vertical node 
point. The resulting diseretization is given as Eq. (3 - 76) which is used to numerically 

8~ . . . . . . .  evaluate the ~ terms m the equat,ons of motlon. Ref _er_rln' g to F,.g. 59, ad. di.'tlonal .acf~.nzr. acy 
and consistency with the locally second order accurate discretlzatlon for interior points can 
be achieved based on a Taylor series method. These use the first three vertical nodes points 
shown in the aforementioned figure. In the upper half plane, noting these by indices 1, 2, 
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Fig. 88. Chordwise pressures on elliptic planform wing inside open jet  wind tunnel, 
AR = 8.0, Moo = 0.7, a - 2 °, # - 1.05, NACA 0012 e.iffoil, 100 × 60 grid. 
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and 3 corresponding to /up ,  yap + 1, and yap + 2 and letting 

h i  - 1/2 - y l  

it is possible to obtain a locally second order accurate expression for ¢~ at I/2 in terms of 
~b I at y ffi O, which is not a node point. The ~i~ylor series gives simultaneous equations 
with informatiou which allows ~b at y = 0 to be eliminated so that the following expression 
can be obtained: 

8 2 $ 2h 1 - 2hlh  2 - h 2 

¢, 12- hlh2(hl  + h~)(2h, + h2) ~ '  + 
hl(3hl+ h2) h2 ÷, I,=0, 

h2(hx + h2)(2hl + h2) ÷8 - 2hl + h2 
(3 - s8) 

where Cy [uffio is specified in the boundary conditions. 

With the PHI1 code modules charted in Figs. 75 and 89 and other figures, an 
Moo - 0.75, a = 2 ° case was computed for an elliptic plenform, aspect ratio 8 wing. 
The wing was assumed con~xed by a circular cross section free jet wind tunnel, with the 
wing spanning 95% of the tunnel diameter. 

To accelerate the convergence of the iterative scheme, the special method described in 
Section 3.2.3 involving the eigenvalues of the error matrices was used. This is particularly 
important for transonic lifting cases involving supersonic bubbles whose dimensions are a 
substantial fr&etion of the airfoil chord such as this one considered here. In Fig. 90, the 
convergence history of the tunnel well perturbation of the circulation is shown. Rapid 
convergence is achieved ~ter only 200 iterations for this grid which had 50 points on the 
airfoil and ~J0 vertical nodes. An important factor controlling this behavior was the proper 
treatment of the shock notch. Referring to Eqs. (3 - 73), particularly, the factors [¢0,,], 
[~0,,], [~0,], and [¢0,], it is imperative in this stronger supereritical case that no di~eren- 
tiation is performed inside the rapidly varying and possibly numerically dispersive shock 
laver which computatioually models its physically discontinuous counterpart. In additio~x, 
the width of the not.ch should be adjusted so that the full Rankine Hngouiot transition 
is achieved. This is based on the weak solutions associated with the divergence form of 
the small disturbance equ&tion. As discussed in Section 2.20, the stremnwise pressure 
variations at various heights above the airfoil depicted in Fig. 85 and the ieoMache shown 
in Figs. 91 and 92 have been considered in establishing the upstream and downstream 
boundaries for the shock notch. 

The basic wind t-nnel wall effect of this NACA 0012 similar wing gives rise to corrected 
isoMach patterns shown in Fig. 93. Clearly evident in this figure is the shock notch. 

3.4.1 Refinements of Shock Fittin~g Procedures 

As indicated in Ref. 29 and Section 3.2.2.2 in the numerical implementation of tran- 
sonic lifting line theory for wind tunnel wall interference, the shock is captured for the 0 ta 
order approximation to the flow, while the 1"* order perturbation is fitted. 
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On the wing, because of the tangent flow condition, [~0,], 
conditions (3 - 73) and (3 - 74) specialize to 

= [4,~,]. = o, the shock 

[K¢= (7+1)¢]] _0 (3-89) 
2 J • 

where ~b is the perturbation potential defined in Eq. ( 3 - 1 )  and ~b0 and ~bz are components 
of the inner expansion given in Eqs. (3 55), and thus (~ffi), ffi K with (~ffi), defined - 

. (..(.÷)÷..c.-)) 
,~ Similarly, the 0 th order shock condition on the wing is 

K 
(4,o.),o - (.~ + z) (3 - 90) 

and the l ' t  order shock condition becomes 

(¢,~.),o ffi - g ;  (~o. .  ),o . Ca - 91) 

Equation (3 - 90) is Prandtl's relation for normal shocks and (3 - 91) corresponds to 
a perturbation of it. Both (3 - 90); and (3 - 91) can be used as checks on the numerical 
codes. Our experience is that (3 - 90) can be satisfied to within 10% in the 0 th order 
code with a mesh of 100 points in the streamwise direction and 50 points transverse to the 
flow. This inaccuracy is important in satisfying (3 - 91) in the 1"  order code. Since in the 
deriwtion of (3 - 91), (3 - 90) is used, an error in its satidaction in the 0 ta order code, 
corrupts the satisfaction of (3 - 91). 

To alleviate this problem, we have modified the 1 "t order shock condition (3 - 73a) by. 
replacing p with p - ~p)f(p), where fCy) is a function that has been defined with special 
properties f~r this application. The quantity (p) is the average of the p upstream and 
downstream of the shock a0 and is 0 when (3 - 90) is exactly satisfied. The function f(y), 
whose value is 1 on the wing and decays to 0 sway from the wing, is introduced to avoid 
discontinuous behavior from the shocked region to the unshocked region across the shock 
notch boundary. With this mocUfication, (3 - 91) can be satisfied even when (3 - 90) has 
numerical errors as has been shown by its recent implementation in the 1"  order code. 

With q~o and ~1, ~, ~b= and the pressures on the wing can be obtained. 

The post-processing steps are as follows: 

Calculate the shock position on the wing by the relation 

1 
-- • = goCv) + ~ g , C y )  

( - )  

C 3 - ~ )  

Let z0 denote the shock position from the 0 th order result and z .  the shock position 
for ~, then (3-92)  gives z .  = z0 + -~gz (Ywdns) = z0 -I-61. For the following procedure, 
we assume zn is less than z0. (A similar procedure holds for the case in which z .  is 
greater than zo.) 
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(b) For z in the range zn+ >_ z _>.-1, @z = ~o. + ~blo. (Subscripts + and - signify 
upstream and downstream; resl)ectively.) 

(c) At z = zn+,  ~bs = ~o.(Zo+) + -~q~l.(zo+) + d~z~o..(zo+). 

(d) At z = z._, @. --q~o.(Zo-)+ bqhoCzo-)+ 6zqSoo.Czo_). 

(e) For z in 1 ~_ z ~_ zo-,  ~bz = ~b0. -I- -~bl.. 

(f) Linear interpolation is used for z between zu-  and z0-.  

(g) Finally, for graphing purposes, linear interpolation is used for z between zn+ and zn_.  

The post-processing implies that (~ffi)m -- (~0,),0, so that the shock condition on the 
wing is satisfied to the accuracy of the 0 u' order code. 

Figure 94 gives pressure distributions for an unconfined finite aspect ratio wing 
(A.R -- 8) and infinite wing for Mach number Moo - 0.75 and angle of attack of 2 ° 
over a NACA 0012 airfoil. Since Cp - -2~21s~ffi, (Cp) - -2621aKI(7 + 1) - Cpc,. As 
shown in the figure, this condition is satisfied for the ~ t e  wing within 13~ based on 
the 0 ta order result. The condition is also satisfied with the same accuracy for the AR - 8 
finite wing. The effect associated with free jet wall interference is shown in the span av- 
eraged chordwise pressure of Fig. 95. Both the aspect ratio effect and the free jet wall 
interference agree with qualitative reasoning of the downwash field induced by the trailing 
• ~ortex system and by the two-dimensional image vortex system in the Trefftz plane. For 
an elliptic plauform, the aspect ratio effect is constant along the wing span due to the uni- 
form downwash induced on the loaded line by the trailing vortex system. By contrast, the 
wall intedea~mce is variable as shown in Fig. 96. The sense of the free jet imaging vortex 
is the same as the tip and trailing vortices associated with finite span. These reduce the 
incidence and lift, moving the shock forward. 

In summary, Steps (a)-(g) comprising the shock fitting procedure above provide a 
numerical mechauimu to ensure that proper shock conditions are satisfied. 

3.5 Computational Implementation of Pressure Specified Boundary Conditions 

In addition to development of the strong supercritical capability, the high aspect ratio 
(HIAR) codes have been generalized to account for pressure boundary conditions on a 
tunnel interface~ which for convenience and without loss of generality have been assumed 
to be cylindrical. 

If the interracial pressure distribution is (Tpz (z, 0), where z is the flow direction and the 
subscript I hereinafter refers to the interface, the corresponding transonic small disturbance 
perturbation backwash on the interface is ¢Io = -Cp~/262/8, where 6 is the wing thickness 
ratio. Also groin analyses given earlier in this report, the outer representation of ~ in the 
large height (H) span limit defined before Eq. (3 - 2), it is clear that ~00t -- ~f. Letting 
~oos -- W(z,O), then 
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Fig. 95. Mean chordwise pressures in free jet,  Moo - .75, a - 2 °, elliptic planform, 
NACA 0012 airfoil section. 
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Fig. 96. Chordwise pressures along span within free jet wall boundary, M~ = .76, 
a = 2 °, ff = 1.0,5, elliptic plsnform, NACA 0012 airfoil section. 

163 



AEDC-TR-91-24 

t= Cpt W = J_= 2~-~d~ (3-93) 

where ~00: at z = -oo  is assumed to vanish. If lateral symmetry W(z',O) = W(z*, -O) 
is assumed, where e is measured from the intersection of the vertical plane of symmetry 
and the interface, W can be represented as the Fourier series (3 - 481)) where the W,  are 
given after Eq. (8 - 49). On the basis of the analysis given in Section 3.1.2 the additional 
downwash W on the loaded line due to the interaction of the trailing vortex system with the 
walls or interface can be represented by a superposition of two effects. If wo corresponds 
to the downwash increment e,Jsociated with a free jet and to! is an increment associated. 
with a pressure specification, then 

to = too +to1 = ~ol , (0 ,0,=*) ,  - B  < z* <_ B .  ( 3 - 9 4 )  

In terms of notation used in the code modules related to PHI1, to 4-+ tint. Based on the 
analysis described in Section 3.1.2 

,.o, = v/-Kz" ~ n( -1)  n ~ Jn(J"'z*) e-J" ' i= ' iwn(z ' idz"  
.=lt,,~t... .=1 3'.0,.) 

(3 - 95) 

where K is the transonic similarity parameter, and in ,  are the zeros of the Bemel functions 
3.. 

In Section 3.1.2, approximations for the inner integral have beem used that suggest 
that the downstream features of the interface pressure do not contribute strongly to wl. 
Because of the substantial exponential factor in the integrand, (3-95 ! can be approximated 
by including only the first term in the inner sum to give 

1 ~ .(_1) - 3~(j'~z') e-~,,,i'"w,,(=')a=" 
n----lt3,St'" 

(3 - 98) 

Equation ( S -  96) has hem used to evaluate a special interface pressure distribution which 
has some features of those discussed in summaries of Ca]span AEDC WIAC related effort 
contained in Refs. 46 and 47. The model intedar.e pressure distribution used with the 
generalized HIAR code is 

cp, = ~e-L%g.(=*)  {1 + ~ ~ e } ,  -oo _< x" _< oo (3 - 9 7 )  

where el and e2 are constants, and sgn(z) = 1 for z > 0, - 1  for z < 0. Equation (3 - 97 I 
implies that 

w(=*) = 2 - ~ ( z  + ~, ~ O ) e - I " l  ( 3 -  981 

WI(Z.) = ele2--I"l 2 - - ~  (3 -99,,)  
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Substitution in (3 - 96) gives 

and 

W . ( z * )  = O, n > 1. 

. / l ( h , z ' )  
= + j . ) , *  

- -  El g2 j I I 

w1(0) = 2a2/svT( I + j . ) j , ( j . )  

(3 - 99b) 

(3 - 100o) 

(3 - 100b) 

1.855e]e2 J1 (3.832z*) 
w l ( z * )  = z* 

A numerical evaluation of Eqs. (3 - 100) red.~c~es them to the following relations: 

( a -  101a) 

'wl(O) --  .984ezez ( 3 -  101b) 

Equations (3 - 101) were utilized in computing the effect of interfucial pressure boundary 
conditions in the HIAR code. Figure 97 shows the effect of the interracial distribution 
of (3 - 10) on the prediction of the midspan chordwise pressure distribution for the NACA 
0012 elliptic wing case mentioned previously for el = ez -- .2. With all other parameters 
the same, the streamwise and angular pressure dependence results in a loss of lift from 
the free jet and unconi]ned flow distributions. Associated Zierep singularity behavior is 
discussed in Appendix B. This example demonstrates a capability which will be useful 
in testing and exploiting concepts for integrating asymptotic methods with experimental 
measurements, (AIM) is a new class of WIAC techniques. AIM concepts will be discussed 
in Section 4. Here, the HIAR code can be a useful means of testing various concepts. 

~.6 Viscous Effects 
Viscous e~ects play an important role in wall interference estimates. In connection 

with this obserwtion, recent compleauentary Rockwell IR&D ~ o r t  indicates that viscous 
effects on a NACA 0012 airfoil for a free field case elose to that of Fig. 94 can produce a 
substantial movement in the shock from its trailing edge position predicted by a purely 
inviscid full potential solver. This is shown in Figs. 98-100, where an interacted boundary 
layer solution moves the shock system to the midchord position. On the basis of this 
experience and other related activity reported in Refs. 48-,51, another contemplated future 
development related to the AIM activity is a viscous version of the HIAR code. 

3.7 Nonsimilar Section W i n ~  and Lockheed Database 
The primary emphasis of this phase of the contractual effort was focused on relating 

the high aspect ratio code to an experimental database. Accomplishments were: 
• The code was generalized to handle nonsimilar section wings in which the airfoil 

sections are not the same shape. 
• One of the wings tested in Ref. 52 was analyzed with the interference-free code 

(0 th order) as well as the software for assessing wall interference (1 st order). 
• The 0 th order code was used to establish the correctibility of the Ref. 52 data. 
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Fig. 97. Chordwise pressures at midspan with pressure boundary condition, elliptic 
planform wing NACA 0012 airfoil, Moo = 0.75, a = 2 ° , p "-- 1.05, 
AR = 8 ,  ~1 = e2 = . 2 .  
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Fig. 98. Comparison of predictions from viscous interacted full potential equation solver 
and experiment. 
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Fig. 99. Density level lines for inviscid flow - -  shock at trailing edge, NACA 0019. airfoil, 
M ~  = 0.799, a = 2.26", 1650 iterations. 
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Fig. 100. Density level lines for viscous interacted full potential code. 
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3.7.1 Swept Win~ Comparison Database 

In Rd. 53, databases were reviewed as candidates for interaction with the contractual 
e~ort described herein. One of these (Ref. 52), although fraying sparse pressure data in the 
far field, was selected to provide an assessment of how the methods of this contract might 
be applied. In this experiment, three swept wings were tested in the Lockheed tunnel, 
isolated from, and in combination with, a fusel~e at transonic Mach numbers. 

3.7.2 Code Gone~alization to Nonsimilar Section Win~s 

Table 2 (Table I from Ref. 52) gives the gcomet.ric paremeters of the wings tested and 
Fig. 101 gives a sketch of their plan~orms. In Fi.~. i02, the root, midspan, and tip sections 
are indicated. This win K has thirYness, twist, and camber distributions that vary linearly 
along the span and is therefore non-similar. Accordingly, the similarity formulation used 
in Section 3.2.2 must be generalized. 

This can be accomplished by simplifying the problem described by Eqs. (3 - 58) 
and (3 - 59) with the transformation 

~i,i, 

with 

Equation (3 - 58a) implies 

Equation (3 - 58b) leads to 

~pp = y(d  +, , , )  , (3 - lo2b)  

L[~] = 0 , (3 - i02~) 

r ,  ,e ( s  lo~ ,0  • -- . 2~"--~FF as r --* co , 

and 

~ o m  F~.  (3 - 58c), 

@,(x,0)=l (0_z<_l) 

r l  
[~1 = ÷F'-~ 

(3 - 102e) 

( 3 -  1 0 2 f )  

Thus, the use of (3 - 102a) and (3 - 102b) reduces the calculation to solution d equations 
identical to the similar-section-wing equations, (3 - 61), with the exception that the 
nonlinear term has ~0. evaluated not at z - 0. In addition, the quantities d and w are 
used parametrically at each span station from a knowledg~ of Po(z), the spanwise loading 
of the 0 th order problem. This corresponds to a kind of strip theory. In order to obtain Po, 
the semispan wink is divided into n span stations, and the zeroth order problem (3 - 57) is 
solved at each. For the results to be pres~ted,  n was selected to be 5. Depending on the 
planform, some investigation is required to determine if this value provides a good enough 
approximation of the spanwise loading to obtain the ~1 variational solution accurately. 
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Table 2. Wing Model Geometry (from Ref. 52) 

AR 

X 

hc/~, deg. 

er, deg. 

Or, deg. 

(t:/¢) r, ~ 

(c/c) c ,  I; 

S/2, cm 2 (in. 23 

b/2, cm ( in.)  

Cr, cm ( in.)  

C:, cm (in.) 

MAC, cm ( in.)  

YMAC, cm (in.) 

A 

8.0 

0.4 

25.0 

2.76 

-2.04 

12.0 

12.0 

528.0 (81.83 

45.7 (18.03 

16.51 (6.50) 

6.60 (2.60) 

12.26 (4.825) 

19.59 (7.7~43 

WING 

B 

3.8 

0.4 

30.0 

2.50 

-4.00 

6.0 

6.0 

530.0 (82.1) 

31.8 (I2.5) 

23.88 (9.40) 

9.55 (3.76) 

~7.71 (6.974) 

13.60 (5.35~) 

C 

2.6 

0.3 

38.~ 

2.38 

-5 .79  

7.0  

!1 .0  

523.0 (81.0) 

26.1 (lo.'26} 

30.83 (12.14) 

9.25 (3.6") 

21.95 (8.642) 

10.68 (4.:0~-) 
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Figure 101. Planforms of tested win.gs (from Ref. 52). 
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Figure 102. Wing A airfoil sections (from Ref. 52). 
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3.7.3 Results 

Chordwise pressure distributions on the swept wing (Wing A) co~flbmration of Ref. 52 
were computed at various s~z, les of attack a, and Mach number M. To achieve rapid con- 
vergence, the streamwise grid was clustered near the blunt leading edge. To demonstrate 
a typical calculation, Figs. 103 and 104 show the effect of wail interference and finite span 
corrections on the chordwise pressures of Wing A at nearly midepan, and at two angles of 
attack. The largest corrections appear to he near the shock at a - 0 °. By contrast, the 
more supercritical case corresponding to a -- 1 ° shows a greater extent of the corrections. 
For both incidences, they are most procounced on the upper wing surface. 

In Pad. 30, modifications to the bo,.mdary value problem (3 -- 57) are discussed for a 
yawed wing. The analysis shows that these changes occur in the far field for the three- 
dimensional l*t order perturbation flow and in both the far field and equations of motion 
for the 2 aa order flow. 

The HIAR code is based on a theory not designed for swept wings. This is because 
the dominant approximation of the inner flow assumes that all spanwise stations are ap- 
proximately two dimensional. If a discontinuity occurs in the slope of the leading edge, a 
local three--dimenzional flow occurs, nullifying this assumption. Such discontinuities occur 
at the root apex and tips of swept and other kinds of planforms. More general cases are 
cranked shapes. Asymptotic procedures are under consideration to treat these corner flows 
and involve "canonical" numerical problems for the nonlinear flow near the corner. These 
canonical problems remain the same for planform changes away from the corner. 

In spite of this limitation, it was of interest to assess the correctability of the Wing A 
results using the 0 th order code. Figures 105 and 106 indicate chordwise pressure compar- 
isons of our 0 th order code with data from ROf. 52. In both figm~, the effective tunnel 
Mach number and angle of attack were modified to match the data. The similarity of the 
pressure distributions suggests the correctability of the test data. In Fig. 105, the influence 
of shock-boundary layer interaction is not as great as in Fig. 106. For treating viscous 
effects more effectively, under complementary IR&D funding, the contractor has developed 
an interactive boundary layer code based on Green's Lag Entrainment model that would 
presumably reduce the effective increment in K associated with the combined Mar.h, angle 
of attack corrections used in Figs. 105 and 106. This was used to obtain the previously 
discussed results indicated in Figs. 98-100. 

3.7.4 Discussion 

In comparisons such as Figs. 105 and 106, what needs to be analyzed are the combined 
e~ects of sweepback and viscous interactions on the interference. In Ref. 29, the similarity 
parameter K was allowed to vary from the 0 th order flow to the I st order wall interference 
flow. This flexibility should be investigated with the aim of systemizing the corrections 
that can be obtained through studies of the type associated with Figs. 105 and 106. The 
variation of K is expressed in a perturbation form related to the asymptotic expansion of 
the perturbation potential ~. This perturbation gives the flexibility of varying the tunnel 
Mach number and geometric angle of attack to correct or simulate free field conditions. 
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Figure  103. 0 th and  1 st order  chordwise pressure dis t r ibut ions on Wing  A, r/ ffi 0.4,5, 

M = .76, a - 0 °. 
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Figure 104. 0 th alld I ot order pressure distributions on Wing A, ~ = 0.5, M = .76, a = I °. 
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Figure 105. Comparison of theoretical and experimental chordwise pressures for Wing A, 
-- 0.5, tested at M - 0.76, a -- 2.95 °. 
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Figure 106. Comparison of theoretical and experimental chordwise pressures for Wing A, 
= .5, tested at M = 0.82, n = 2.9 °. 
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3.S g(r ts 

A high aspect ratio wing-body configuration is shown inside a wind tunnel in Fig. 107. 
In what follows, the effect of the fuselage on the theory for wing-alone transonic wall 
interference will be considered. For this purpose, the fuselage will be considered slender 
and axisynnnetric. Within the coordinate system shown in Fig. 107, the equation of the 
body is 

B = , -  6F( ) - o . ( s -  l o s )  

The analyses in the previous sections and PAd. 29 indicate that the transonic high aspect 
ratio wing fiow in a wind tunnel could be treated by an extension of the lifting line theory 
for the unconfined case discussed in; Ref. 30. The principal ideas are that: 

1) The near field (inner expansion) in the vicinity of the wing is two dimensional in the 
sense that the spau stations are independent. 

2) The finite span effect is felt through the effective downwash of the trailing vortex 
system on a bound vortex or lifting line simulatin K the wing. The trailing vortex 
system corresponds to the ou t s  (far field) expansion. 

3) The effective atwist" of Item 2 is compu*ed by a form of Biot Savart's law which was 
systematically derived from an integral representation based on Green's formula. This 
twist represents matching of the inner and outer expansions. 

4) The wall interference problem can be solved by using an appropriate redefinition of the 
Green's function used in the Green's formula of Item 3 which satisfies the appropriate 
wall boundary conditions in contrast to the free field definition. 

Based on the findings of Section 3.1.1.2, the Green's function amounts to ima~ug 
the streamwise projection in the Tre~z plane of the wing trailing vortex system into the 
projection of the wind tunnel wall boundary. This theory is an outgrowth of a systematic 
asymptotic treatment of the transonic case. It gives a Green's function which has the 
same form as for incompressible flow derived by a different method in Ref. 54. The basic 
features of the lifting line idealization of the fiow are shown in Fig. 55 for a circular wind 
tunnel. 

If the tunnel Mach number is such that the far field is subsonic, then Green's for- 
mula can be used to solve the Prandtl Glauert equation of motion which can be recast as 
Laplace's equation if the transonic similarity parameter K is scaled out in the usual way. 
Green's formula can then be used to give an integral representation of the flow. Charac- 
terizing the field by a perturbation potential ~ which has been defined in Section 3.1.1.2, 
the integral representation (3 - 10a) with addition of the body is now 

--/BODY +/WALLS + lw (3-  104a) 

where: 
(3 - 104b) 
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Fig. 107. Confined high aspect ratio wlng-body model. 
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and I'WALLS and Z~ are defined in (3 - 10b) and (3 - 10c) and G = 0 on the walls as 
in Section 3.1.1.2. Therefore, if a free jet wall boundary condition ¢ = 0 is considered, 
/'WALLS == 0. For convenience, the thickness el~ect of the wing will be neglected in what 
follows. The analysis can be easily ~ztended to include it. 

It will be seen that the principal effect of the body is to modify the integral Iw in 
(3 - l la) .  This causes a change in the finite-aspect-ratio downwash all along the loaded 
line. ,4 m o ~  local effect occurs in the near field at the wing-body junction in the case of the 
flow near the tips or a kink at the center of a planform. In these regions, the assumption cf 
independeuoe, of spanwise sections is invalid. The resulting fully three-dimensio~.al flows 
are assumed to lead to only a secondary influence on wall intergerence and wiP. therefore 
not ]:e considered in what follows. ,The main focus will be the calculation of 1~. Prior to 
its cs]¢ulation, we note that IBODy:is given by 

: it aq~. 2~pGBODYd~ ZSODV = ( 3 -  105) 

By linearity of the outer flow field, the body is assumed to be characterized by a line source 
which is superi~.o3ed on the trailing vortex sheet flow shown in Fig. 55. Hcre, 

, ( 3 -  106) 

wh~e A is the local cross sectional ares. Be~uze of the superposition property, a more 
general fuselage shape can be considered. For such a configuration, (3 - 105) and (3 - 106) 
would stin be valid. 

In ~. free field, 
0 = _ !  1 (3 -  107) 

4, ,  - 0 2 )  + (e  - n)2 + (,, - 

where for p, ~, z, ¢ will hereinafter signify scaled coordinates. 

For free jet boundary conditions on s circular wall, it was shown in Section 3.1.1.2 
~h~t 

1 oo ( 3 -  13') 
o =  

, , = _ =  ,, • ' 

where the 3 ,  are Bessel functions and ~nk their zeros in accord with definitions given 
earlier, and by symmetry the • argument given in (3 - 18) is omitted. Because of axial 
symmetry, the effect of/BODY on the finite aspect ratio downwash effect will be zero. 

To treat Iv, the result obtained from s systematic approximation procedure for the 
wing-alone casewill be generalized. The generalization will be obtained by modifying the 
imaging solely in the Trefftz plane. Accordingly, the doublet sheet interaction with the free 
jet tunnel boundaries will be considered as depicted in Fig. 108. As in Section 3.1.1.2, the 
effect of the line doublet is obtained by superposition of individual elements. A circular 
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cross section body is anslyzed herein. More general cross sections can be handled by the 
techniques described in Refs. 49 and 51. 

To expedite the solution, only slender bodies in the sense that the maximum body 
diameter is small compared to the wing span will be treated. In fact, in the outer limit 
certain stretched coordinates were introduced in Ref. 29. Denoting the span in units of 
the chord 88 b, these are 

z p z . . = ~ ,  ~ , * = ~ ,  . ' = g ,  B=6'/'b exed.6--,O . (S-108) 

84/8 
Accordingly, e = --~--. Obviously, other choices are possible besides using 6 as the body 
raaximum thickness in (3 - 1). This option gives a region of transonic flow around the. 
body ~hat has lateral dimensions of O(6-~). 

To obtain the image of a doublet in the annular region e _< r* ~/~ shown in Fig. 108, 
perturbation methods are used. He, re, r" - ~/g" + z'*. Two cases can be idontified: 

(~) ¢ = o 0 )  
• (ii) ( = o(e)  

c , ~  (0 
Denoting the complex potential as F(Z)  = ~(z, p) + i~(z, p) with Z = z + ip, where 

the stars on p and z will be dropped, the appropriate expression for F is 

1 

® 

( s -  109) 

In (8 - 109), (1)represents the doublet, ~)its "reflection" in the t-nnel  boundary r ----/~, 
~)is a compensation term to make the body a stream surface, and (~)is a ccmstant added to 
match the Case (ii) expression for ( in an overlap domain of mutual validity. This feature 
will be used to obtain a uniformly valid representation in (. Ter m ~)is associated with the 
behavior 

( 1 1 )  ( D + ® -  ~ + ~  z - z- - ,o  

and the circle theorem for homogencous Dirlchlet conditions. Thus if A = ~ + ~ ,  
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Fig. 108. Projection of doublet sheet in T r d t z  plane. 
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and since Z = ~ on r = e, then 

~)+ ®+@ = A(Z--~) 

so that 
Re( (~+  ~ +  @) = 0 

which is the desired property. 

It is important to note that the reflection term (~ 
dition on the tunnel boundary [Z[ = F. 

Case (ii) 

For this case, 

does not spoil the boundary con- 

2=iF = 
1 ~ (  1 / Z / ,2 / 

z - (  ~ z - ~  -~ 1-~ . (8-11o) 
@, (~' (~' 

In (3 - 110), Term ~)' plays the same role at IZ{ - ~ that @did in (3 - 109) at IZl  - ,. 

Eq,mtions (3 - 109) and (3 - 110) can be used for separate ranges of a convolution 
integral representing the perturbation potential d the doublet sheet in the Trefftz plane. To 
remove arbitrariness associated with the tu to r  between Case (i) and Case (ii), a combined 
uniformly valid expression in ¢ is preferred. This is obtained for the function 

1 ( 3 -  111) U ( z ; o  - 2 1 r i F -  Z""~¢ " 

An intermediate limit is considered in which 

<:.=¢-- f ixedas e~O 
r/ 

where ,  < <  rl(, ) < <  I. 

Thus, for both Case (i) and Case (ii), 

(3- 112) 

The uniformly valid representation is therefore the sum of the representations for Case (i) 
and Case (ii) minus the common part given by (3 - 112). The resulting expression is 

27riF-z-¢+ Z-~ Z-- +~- -~-F~ -~-F ~ (3- 113) 
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Taking the real part in (3 - 113), the resulting expression for Iw is: 

4¢ _ z - ( ) 2 + y ~  1+ 

1[ ~ , ,  .2 ]1 
- ~+V v2¥~2+¢2¥~ de 

) x /=2+v2+(z -  0 2 

(3-  114) 

3.8.1 Discussion 

]~;quation (3 - 114) represents the downwash expression associated with finite span 
for a high aspect ratio wing-body combination in which the body maximum thickness is 
a small fraction of the span. This expression is the generalization of that being used for 
the inner solution far field for the wing-alone code. It contains interactions between the 
tunnel boundaries and the body. It is clear that the most important contribution is when 
( = o(~). 
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4. ASYMPTOTICS INTEGRATED W I T H  M E A S U R E M E N T  (AIM) 

I N T E R F E R E N C E  E S T I M A T I O N  M E T H O D S  

Analytical and computational techniques were described in the previous sections to 
predict transonic wind tunnel interference over slender and high aspect ratio models. These 
methods are oriented to interference prediction strictly from a knowledge of the tunnel and 
model geometry as well as the flow parameters such as test section Mach number. They 
are based on an inviscid approximation of the flow. Howev~, by allowing the boundary 
conditions on an outer wall or cylindrical interface to correspond to the specification 
pressure, viscous ~ud other phenomena may be indirectly incorporated into the anal,'sis 
in accord with methodology developed by workers at AEDC, NAE Ottawa, NASA, and 
elsewheaw. For purposes of the following discussion, such techniques will be grouped under 
the category of Wind Tunnel Interference Assessment/Correction (WIAC) methods. By 
contrast to the methodology in Sections 2 and 3, these approaches combine the analysis and " 
computation with experimental methods to determine the magnitude of the interference as 
well as the feasibility of accounting for the interference either by simulating an interference- 
free condition corresponding to the test environment or providing some sort of post-test 
correction to the data. 

In what follows, procedures are described that can augment the eifectiveness of WIAC 
concepts. They exploit the theoretical knowledge developed under this contract described 
earlier in this report as weU as experimental measurements in the determination of wall 
intedea~nce. The scope of the discussion is to outline the basic concepts. A more detailed 
feasibility study as well as proof of concept is intended as future effort. 

4.1 lutederence on Moderate and Low Aspect Ratio Confib, urations 

As described in Ref. 29 and elsewhere, the two variable method (TVM) provides a 
basis for simulating the e~ective body shapes in the t ~ e l  which may differ from the 
"hard" physical geometry of the model due to viscous interactions and other etfects. If 
this representation is assumed to be the same in the free field, then its knowledge from 
measurement and computation can be utilized with further computation to obtain the free 
field aerodynamics or the interference. Existing transonic TVM's such as those described 
in Ref. 13 typically employ a second measurement on the interface to establish the etfective 
body shape with an iterative computational inverse procedure. In the inverse method, a 
first guess is successively refined in a feedback loop to satisfy the second interface condi- 
tion. A concept has been developed in the contract to avoid this loop or accelerate its 
convergence. Application to nonaxisymmetric compact configurations that satisfy a class 
of requirements which may be of considerable practical WIAC utility has been investigated. 

The method is motivated by slender body theory. Using previous notation in which 
a = angle of attack, ~ = maximum thickness ratio, b = semispan, h = characteristic wall 
lateral dimension, the flow over a test article shown in Figs. 109 and 110, and given by 

r = 6 F ( z , O )  ( 4 -  1) 
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is considered, where the normalized cylindrical coordinates 

z f -  , ~ = -  , z f -  , r f -  , ( 4 - 2 )  
C C ~ C 

are employed and c is a characteristic body length. In the inner near field, close to the 
model as described in Refs. 29 end 30, the following asymptotic expansion is assumed to 
be valid for H = h~ fixed* 

~-- = z + 262 log 6St(z) + 62~I(z, ~'*, z*;A) + ~ log ~2~(z,  V*, z*; A) + P~2(z,  U*, z*; A) 
U ( 4 - 3 )  

which is valid in the inner limit 

1 - M 2 ~  a 
Y K -  A--  fz~ed as 6--~0 ( 4 - 4 )  • ,v* = , , 

The ~ field" of this inner expansion worked out in Ref. 30 is ff r* = r/~ --+ co 

p~ = S1(z)logr* + g~(x) + 
Dz(z)cos0  + El ( - )cos  20 + . . .  ( 4 -  5a) 

7"* r .2  

~21 --  2S181 ]ogr* -[- g21Cz) "}" 2S2(z) + ' "  (4 - 5 b )  

, ,p2=SlS log2r*+S2(z)Iogr*+g2(x)+... ( 4 - 5 c )  

where if A * ( z )  - normalized cross sectional area, Sl = ~ and g2 can be found from 
integral theorems~ based on the inner bo~mdary value problems but will not be considered 
further here. This approximation "' Is nonuniform with respect to r*. Two other approxi- 
mate r e p r ~ t a t i o n s  are required to overcome this nmmuiformity. For H -- fixed, and a 
cylindrical wall, there is an outer region in which the asymmetries relax to nonlinear axial 
symmetry in a manner that has been discussed in Refs. 29, 30 and elsewhere**. Prelimi- 
nary studies based on integral equntion asymptotics and particular solutions indicate that 
the wall reflections are regular functions of r* which do not perturb the singular behavior 
that controls matching with another representation needed in an intermediate domain to 
obtain consistent approximations in the higher orders. This fact has implic&tions on the 
magnitude of the lift interference. 

From Ref. 30, the outer expansion of @ is: 

= z + 62~I (x ,  ~, ~; K,  A,  H )  + : 1og6~21 + 64~2 + . . .  (4  - 6a )  

* The H --* co approximation made in Ref. 29 will be suppressed. 
** This property can be extended to mildly noncircular test sections such as octagonal 

shapes or measurement interfaces that are su~clently distant so that the angular pertur- 
bations are weak. This can be formalized asymptotically. 
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Fig. 109. Slender vehicle'confined inside cylindrical wind tunnel wails. 
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Fig. 110. l~ront view of wind tunnel model eonfmed by cylindrical walls, showing important 
regions. 
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for 
z , O , ~ . , K , A , H  fixed as 6 ~ 0 

The equation for ~1 is the Karman Guderley (KG) equation, 

( 4 -  6b) 

1 
(K  - (')' + 1)q~zo)~,.o -I- ~(F~,,)p = 0 ( 4 -  7) 

wher~ no tunnel perturbation in K is assumed. 

In coutr-~qt to s large H far field or s subsonic line source free fie/d asympf~tic, an 
sxisymmet,ic pressure--specifed interface conditiecz for (4 - 7) is 

~, (= ,s )  = F(=) ( 4 -  8) 

which in accord with previous remarks is assumed to leave the free field ~ --* 0 asymptotics 
of (4 - 6a) una~ected to dominant order. These are: 

~, = S l ( z ) l o ~ + . q l ( Z ) +  I~- -~- -S~S~' I~ Io~F+T(z) rn l °gF+ V(=) F2 + " "  ( 4 - 9 , )  

~21 = -2S1S~ log~ + g21 + " "  

~2 "-- 
DI (z) cos 0 

+ S~ S~ los 2 ~ + g2 + ' "  

The intermediate expansions are 

(4 - 9~) 

(4-9c) 

- - = z +  + 
U 

-I" E ~ log6~'~sz(z,y, =) + ~'~s(x,y, =) + . "  

(4 -10 , )  

for 
z, l t ,=,r ,K fixed as 6 ~ 0 , (4=- lOb) 

where for rc~tching with the inner expansions the following representations hold: 

~-T = s~(=)lo~, + g~(=) + ...  (4 - 11,) 

-- DI cosO 
r 

-- ~ + 1 .  ~2 

r "  ' s ' "  x s ; ' - ( ~ +  z)(s;')'] + [(-r+ Jtg~ ~ J -  

3'+1 , ,,2 -~-;;~ = -s~s;  + ~ - - s , s ;  ~ 

( 4 -  11b) 

r2 ( 4 -  11¢) 
~-+... 

(4- 11~ 
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~-~ _ E1 cos 2 0 
r 2 + S | S l l o g 2 r + S 2 ( z ) l o g r + g z ( z )  ( 4 -  11e) 

7 + 1  i . 2 ~ $1S1 r log = r + Y(z)r 2 logr 4- V(z)r  2 (4 - 1 i f )  

For p~poses of assessing drag interference, the key ide6 it= one poJaible AIM TVM concept 
bring e~ucted  i8 ~af  Ega. (~ - 11) can, be ~eg  fo determine the "e~ec~ve ~d~ ~ i~fer- 
gction wi~ no~i~e~r outer flow field. For example, it is envisioned that (4 - l l a )  ~.n 
be used to determine the effective source strength ~l(Z) by a simple radial differentiation, 
i.e., 

'~r -_- ~2~'~1, + 0 ( ~  a) = ~25t (z )  (4 - 12) 

add ~ measurement of the radial velocity @r on an interface surface r - 0(1) at each z 
st~ti~'~. The function ~ ( z )  can be used with the boundary conditiou associated with the 
dominant term of (4 - 9a) to obtain the solution of (4 - 7) subject to (4 - 8),  where  F can 
be obtained from pressure measurements as 

2 f /  C,p(z, t t )dz  ( 4 -  13) F = - ~  ® 

The solution of the outer KG problem will give the free field drag and the interferenee. 
For example, under mild restrictions on the equivalent body of revolution source strength 
distribution 81(z), the free field wave drag D is 

D /o ~ p~--v2 = 2¢6' Sl'(z)g~(,;K)~ ( 4 -  14) 

based on a momentum theorem given in Ref. 30. In (4 - 14), the function gl is computed 
from the numerical solution of the free field KG problem. 

In accord with previous remarks, it is envisioned that this approach m y  be generalized 
to weak deviations about axial symmetry on a measurement interface in the outer region 

~--- 0 0 ) .  

Analyses of the free field structure for the highly and intermediately loaded cases 
have been given in Refs. 48 and 55, respectively. Reference 48 describes the ease where 

K --- 1 - _ ~ ,  with el -- a 2 in ~ ,  and Ref. 21 considers the thickness 6 -- O(el). For 
P~ .  48, in contrast to the case described in detail above, the first order term in the near 
field is apprommately a dipole. No intermediate expansion is needed to match with the 
outer representation which still relaxes to KG axial symmetry to dominant o~der. However, 
the effective source strength ~1, rather than being controlled by the rate of change of cross- 
sectional area A*(z) as in the weakly loaded case, is given by: 

s~ -- ~ + 1 tICz)ti'(~) ( 4 - 1 5 )  
2 (2~r)2 
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where t l (x)  is the cumulative free field lift up to a station z, which can be computed by 
:Iones' theory. For a cambered, zero-thickness wing on (0 _< z _< 1, -zL~ _< z _< zLs), 
for which y -- a / (z ) ,  el(z) -- - - I r f ( z ) z ~ E ( z ) .  Studies are in progress of the matching to 
assess what is the role of the wall reflections on the inner flow field structure and their 
importance relative to the interference lift. For drag of a zero thickness configuration, the 
effective source strength distribution may be inferred from the measurement procedure 
previously described, since the outer solution has the same dominant behavior given by 
(4 - l la) ,  in spite of the different interpretation in (4 - 15). 

The relaxation to the structure given by (4 - 9a) in about the r ffi O ( ~ )  scale of the 
lift dominated theory has been corroborated with zonal gridding procedures and free field 
Euler calculations of K. Szema which were funded under another program using codes and 
algorithms developed by S. Chakravaxthy. The F-14 configuration shown in Fig. 111 was 
analyzed with simulated flow-through inlets at Moo ffi .8, and a ffi 13.5 °. The isobars axe 
shown in Fig. 112. There is also a suggestion of near field ~ r  behavior in the contours 
which are however skewed by strong dp vortices. 

The relaxation shown in Fig. 112 is a suggestion of the feasibility of the radial velocity 
unfolding concept previously indicated to obtain the effective source strength 81. One 
possible application of the method could be the cruise missile configuration discussed in 
Ref. 47. 

4.2 Hitch Aspect Ratio Configuration WIAC Method 

Considering the high aspect ratio arrangement shown schematically in Fig. 113, at a 
wake station P Q  associated with a near field limit of the outer solution, downwash due to 
the vortex sheet reflected in the tunnel walls has been derived and discussed in connection 
with the lifting line theory of transonic wall interference in Section 3.1.1.2. Suppressing the 
additional fuselage upwash effect and its interaction with the walls, which can he handled 
by conformal mapping procedures, the net downwash in s it ffi 0 downstream plane of the 

wing alone is 

) ( 4 - 1 6 )  

where using previously defined notation p ffi H / B  ffi ~ ,  H - 61/sh, B ffi $11sb, ~/ is 
proportional to the free field infinite aspect ratio sectional lift coefficient and wl is the 
downwash effect associated with deviation of the pressure field on the interface from zero 
perturbation pressure, where from Section 3.1.2, if the interface pressure is Cp~ 

W(z*, O) = f:: Cp,(~*, H, O).dz * 
-2~21s 

= Wo(:) + w,,(:) ces,  
n----1 

z = H x *  , ~ = ~l /3y = Hy*  , £, = 61/3z = H z *  
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Fig. 111. F-14 configuration. 
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Fig. 113. High aspect ratio wing model. 
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with 

and 

I fo W(z*, O)dO wo=; 

I" W, 2 W(z*, O) cos nOdO 

1 o~ J1(jnlz ' )  /~e_ j . , l f f i . [Wn(z , )dz ,  
" 

J - ~  

where K is the transonic similarity parameter and the jnl  are the zeros of the Beesel 
functions J,(z*). 

Equation (4 - 16) can be used to determine the free field lift and span loading as follows: 

1. Measure the left hand side w at PQ. A generalized form of (4 - 16) applies at y ~ 0 
and the measurement could be made above or below y = 0, if this is more practical. 

2. Equation (4 - 16) can be inverted once and for all numerically and presumably also 
analytically with a Green's function based on eonformal mapping. 

3. An analytic inversion of (4 - 16) can be used to compute ~ ( ( )  by a quadrature. This 
could be interpreted as the "effective " span loading associated with viscous effects. 

4. The function 7~(() in Item 3 can be used to compute the free-field finite aspect ratio 
downwash correctic~ woo on the loaded line given by 

1 (4-17) 

where the principal value of the integral is to be taken. 

5. The HIAR code can be used with w~ to compute the free field span loading and lift. 

4.9..1 Discussion 

Steles 1--5 in the high aspect ratio AIM method sidestep the need for computationally 
intensive three-dimensional simulstions as well as time-consuming gridding preparation. 
It however requires a knowledge of the downwash field behind the model. This can be 
done by a rake or other instrumentation. Once this is obtained, (4 - 16) can be inverted 
using Fourier series or collocation methods. The approach ingie~ed is by no means limifeg 
~o a gotmr~wash meaaurement. Other derivstives of the scheme can be conceived such as 
using pressure measurements. Since the approach depends on the application of lifting line 
theory, its elasticity with respect to moderate aspect ratio shapes needs to be assessed. 
This can be ~ i e v e d  by comparisons with three-dimensional numerical simulations and 
experiment. 
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5. CONCLUSIONS,  HIGHLIGHTS A N D  S U M M A R Y  OF F I N D I N G S  

Transonic wall interference asymptotic formulations developed under a previous 
AEDC contract, "Study of Asymptotic Theory of Transonic Wind Tunnel Wall Interfer- 
ence," (Coutract F40600-82-C-0005) have been computationally implemented. This ac- 
tivity motivated additional asymptotic studies and the development of AIM (Asymptotics 
Integrated with Measurement) techniques that are designed to extend the applicability of 
the computational and analytical methods. 

Key findings and highlights of the effort are: 

1. The "Area Rule" for transonic wall interference of slender airplane test articles 
discovered in the previous contract, applies for pressure boundary conditions in 
the large height limit, H --* oo. Its validity for pressure interface boundary 
conditions needs to be assessed for H -- 0(I).* 

2. The scalings associated with the gauge functions appearing in the formal asymp- 
totic expansions for the interference potential in the slender body limit agrees 
with that deduced by Goethert in ROf. 56 using non-asymptotic methods and 
validated against experiment. 

3. Pressure specified interface boundary conditions over con~ed, slightly subsonic 
slender bodies give an asymptotic triple deck structure resembling th,~t arising 
from free jet and and solid-wall, classical conditions, providing that the interface 
circumferential variations are mild. Such angular distributions are anticipated in 
the sensible far field with circular or octagonal test sections, even for realistic, 
compact fighter configurations having appreciably asymmetric cross sections, but 
at moderate angles of attack. This occurs because of the strong three-dimensional 
flow relief associated with this small average effective thickness ratio or charac- 
teristic flow deflection (6) regime and the associated rapid relaxation to axial 
symmetry in the radial direction transverse to the freestream. 

4. The inner deck has the usual Oswatitsch Equivalence Rule cross-flow harmonic 
structure. For large height, the intermediate layer is a weak perturbation about 
free field conditions, where the strength of the perturbation is o(H) as 
H --* oo. In this region, matching with the outer deck shows that the e~ect 
of the pressure boundary conditions is felt in an average sense, i.e., only the first 
few harmonics of the circumferential variation are important. The outer or "wall" 
deck is an effective tube vortex reflection of the multipole representation of the 
test article. Higher order approximations of the intermediate or central deck lead 

Bs to ~-~ terms in the equation of motion. However, the significant computational 
overhead of the resulting three dimensional formulation can be avoided since the 
8 variation is simple and can be factored out due to ]inearity. This leads to a 

* The asymptotic treatment of these pressure conditions was undertaken over and above the 
Work Statement of the current contract. 

197 



AEDC-TR-9 ! -24 

two dimensional (axisymmetric) formulation similar to that encountered in the 
FJSWCI (free-jet or solid wall cylindrical interface) problem, except with forcing 
terms (in the higher approximations). These can be readily treated with superpo- 
sition procedures that are allowable due to Unearity of the variational interference 
equations. 

5. With pressure interface boundary conditions, the H scaling of the similarity laws 
for A C p  and ACD,  respectively, the interference pressures and drag, are un- 
changed from the FJSWCI case. Again, in contrast to the H = O(1) problem, 
but as in the FJSWCI case, the H scaling is known, eliminating the need to solve 
fox new H's associated with different test facilities when all other parameters are 
unchansed. 

6. For solid walls, and for the H -- O(1) numerics, the structure of the upstream 
and downstream far fields was determined. For a blunt or stinged base, a uniform 
source flow at infinity results, in which ~ ~- =ECz as z ~ -4-oo, where C 
body base area. For a dosed body, ~ ~ -I-D as z --* -l-co, where D=doublet 
strength which consists of a linear part, proportional to the body volume, and a 
nonlinear portion proportional to the average kinetic energy of the interference 
perturbation of the streamwise velocity component. It was expedient to avoid 
this term in computational implementations for closed bodies. Homogeneous 
Neumann conditions were used at the inflow and outflow boundaries z = 4-oo 
rather than the doublet condition. This step was justified due to the exponentially 
smaU higher order terms in the z --* -l-co far field expansion. This structure is 
similar to two-.dimensional flow solutions worked out in Ref. 57, in which the wall 
condition "drives" a faster decay than the algebraic one associated with the free 
field. The exponential rate of decay for the axisymmetric case of slender body 
theory di~ers from the two-dimensional airfoil case since these are eigenvalues 
arising from the Sturm-Liouville problem for the Green's function and these 
differ in both situations. 

7. Consistent with the contractual Statement of Work (SOW), Task 1.0, a code 
solving only the FJSWCI case was developed. (Pressure boundary conditions 
however can be treated by the high aspect ratio code developed under Task 3.0.) 
Two solver modules (RELAXI and RELAXV1) were developed to model the 
0th order free field basic flow and its 1st order wall interference perturbation, 
respectively. An excellent experimental validation of RELAX1 was achieved for 
a blunt nosed axisymmetric body tested by Couch e~ al. It is believed that an 
intrinsic clement in obtaining this validation was the special procedure developed 
to discretize the boundary points near the logarithmically singular line ~ = 0 in 
the inner Axis deck of the flow. In keeping with the thrust of the contractual effort 
that combines the best features of asymptotics and numerics, these discretizations 
used the inner expansion instead of a one term Taylor expansion with a remainder 
to characterize the nodes near F = 0. 

8. Special techniques extending those originally developed by Small and Cole were 
utilized to fit the shock in the numerical treatment of the interference perturba- 
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10 .  

11. 

12 .  

tion flow. Schemes were worked out to surround the shock by an "upright" notch 
having vertical and horizontal sides. This scheme which is easier to program 
and avoids subtle issues associated with an alternative method which actually 
follows the shock curve with a astaggered notch" was computationaliy imple- 
mented. More effort is required to compare the effectiveness and accuracy of 
both approaches. An important issue is the accuracy of the discretizatiov of the 
vertical velocity component vl of the variational flow and the avoidance of un- 
necessary smearing out of the shock region beyond the normal Rankine-Hngoniot 
transition zone if an upright notch is used. For slender bodies, this concern seems 
to be relieved by the fact that the shocks are almost normal, since the freestream 
Mach number needs to be very close to unity to obtain a supersonic bubble of 
any significant size. A study of the relative criticality of this issue for the high 
aspect ratio problem is also needed. 

Other sensitivities of the numerical treatment of the interference field are the 
proper dimensions of the notch and the ~ t i o n  of the tip of the shock. For 
the two-dimensional airfoil case, Murman numerically investigated the formation 
of the shock as the envelope of the characteristics of the second family reflecting 
from the sonic line. Because of its steepness, this envelope is poorly defined. The 
calculations showed some sensitivity to this definition as well as the location of 
the position of the upstream and downstream vertical legs of the notch. More 
work is needed to improve this part of the method. From experimentation and an 
examination of the pressure profiles as well as the z discretizations, a four point 
transition seemed appropriate for the width of the notch for slightly subsonic 
tunnel Mach numbers. 

In a separately funded AFOSR effort, the structure of the triple point singularity 
at the foot of the shock was examined in connection with handling the pertur- 
batiol~ Rankine-Hugoniot shock conditions at the notch, particularly at the foot. 
As a part of this, Cole and Malmuth in Ref. 38 analyzed a shock position invari- 
ante with Mach number discovered by the latter in calculations of the flow over a 
parabolic arc body. More work is needed to understand this phenomenon in free 
and confined flows in connection with generalized Lavre~tef-Bitsadze models. 

Calculations for flow over a parabolic arc body at a freestream Mach number of 
.99 indicate that the wall perturbation flow has a very dominant spike localized 
about the shock region. The preshock influence is very weak compared to the 
postshock influence. The shock spike phenomenon seems to control the entire 
structure of the interference flow and there is rapid decay away from this region. 

Allowing for a perturbation KI in the similarity parameter K in the asymptotic 
expansions for the perturbation potential provides flexibility in defining minimum 
interference or interference-free conditions. A proof of concept has been obtained 
in which interference-free conditions for the drag have been been defined for a 
parabolic are body through alteration of the tunnel Mach number or its thickness 
ratio using methodology discussed in Section 2.18. 
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13. Lift interference is negligible compared to drag interference for the t h i ~ e s s  dom- 
inant distinguished limit of the flee field siender body basic flow. 

14. Pressure specified boundary c~mditions include the same mechanism governing 
wall interference g~r high aspect wings as with ~ee jet and solid wall boundary 
conditions. Namely, the intera~tion is still primarily associated with the alteration 
of the downwash field on the loaded line (bound vortex) due to the interference of 
the walls or interface with the trailing vortex system. The e~ect of the variable 
interface pressures can be handled by a superposition of a tube vortex and a 
free jet solution. The tube vortex corresponds to the interracial pressure data 
and is continuous across the wing wake. The sum of both solutlons satisfies the 
boundary conditions of the complete problem. The tube vortex modifies the 
downwash on the loaded line, i.e., the e~ective angle of attack along the span of 
the wing. 

15. The interference downwash on the loaded line due to the imaging of the trallh~ 
vortex sheet into the walls or interface was analyzed to successfully accomplish 
Task 2.0 of the contractual effort. A Green's function method was developed to 
provide an extremely powerful means of o b t a h ~  an asymptotically consistent 
approximating sequence for the imaging. Properties of the Bessel functions ap- 
pearing in the integral or eigenfunction representation of this Green's function 
indicate that even for the transonic case, the downwash field is essentially the 
same as that for incompressible flow. In particular, it is the solution of a two-- 
dimensional problem in the Tre~z plane infinitely far downstream. This problem 
reduces to the interaction of a two-dimensional vortex sheet distributed along the 
projection of the wake in the "l~fftz plane with the circular projection of the 
walls or interface in this plane. Another Green's function which can be obtained 
by the Method of Reflection involving inversion in a circle solves this problem. 
However, the expansions of the Bessel functions in the expression for the first 
Green's function give this interpretation directly. Corresponding information is 
needed for choked and slightly supersonic tunnel flows. 

I 

16. Under Task 3.0, a code capabie of handling high aspect ratio coniq.gurations was 
developed. As in the slender ]~ody code written under Task 1.0, an upright notch 
was used to treat the shock in the interference flow. The downwash boundary 
conditions developed in Task 2.0 were used for the solver module which deter- 
mines the interference field. The code can handle wings with spanwise nonsimilar 
sections by use of a normalizing %rick" which reduces the computational problem 
to one resembling that for similar sections. Pressure interface boundary condi- 
tions can be treated in many situations through the post-processing rather than 
the solving step. This feature is another saving in computational overhead. The 
code is quite inexpensive, with practical results readily accessible on VAX6000- 
410 type mainframes and clusters. It is ideally suited for use on workstations 
such as SUNs and VAXstations. For more utility and geometric applicability, the 
e~eet of sharp kinks in the planfm-m shape needs to be analyzed. A special issue 
not present in the slender body code needed attention in the development of this 
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code. It concerned the improvement of the e/Bdency of the algorithm by use of 
convergence acceleration methods. Application produced significant speedup in 
the attainment in the pseudotime asymptotic for the interference circulation F1. 
To improve the numerical conditioning as for the slender body code, the far field 
singularity was regularized by subtracting it out from the dependent variable ~I, 
converting the homogeneous boundary conditions on the body to inhomogeneous 
ones. For the slender body case, a forcing term was added to the equation of 
motion with this method. Another rhauge in the formulation under this trans- 
formation is a aught modification of the shock jump conditions. Regarding grids, 
the main issue relates to adequate clustering at blunt leading edges, shocks and 
trailing edges. From the previous discussion, those related to embedding the 
wind tunnel or interface boundaries into the grid are vastly simpler than those 
encountered in large-scale Navier Stokes simulations. 

17. Calculations with the high aspect ratio code indicate that the effect of free jet 
boundary conditions on slightly subsonic wings is to reduce the lift and make the 
wing less supercritical. The shock is weakened and moved upstream. For many 
cases, it is envisioned that the change of the spanwise loading tends to follow 
the inner solution "strip theory" scaling with the local chord variations as in 
incompressible flow. More work is required to help define the role of interference 
on the nonlinear interaction between vortex and wave drag which differentiates 
transonic flows over these high aspect ratio wings from their low Mach number 
counterparts. 

18. Preliminary analytical work has been done on the e~ect of a fuselage on 
aspect ratio wings. It is envisioned that the most important change in this regard 
is the interruption of the projection of the trailing vortex system in the "~re~tz 
plane by the body, providing that the body size is small compared to the wing 
span. For such configurations, the interaction of the body thickness with the far 
field near the interface and the inner solution does not appear to be significant 
in determining the lift interference. However, the effect on drag needs to be 
investigated. 

19. Two techniques were developed to extend the applicability of the asymptotic 
approaches developed to more realistic viscous environments. These AIM meth- 
ods integrate asymptotic techniques with experimental approaches and have the 
potential of making WIAC approaches such as the TVM more economical, prac- 
tical, fast-responze and accurate. For missile configurations and typical compact 
fighter arrangements such as ATF blended wing shapes, the cross-flow gradient 
dominant inner deck and the Area Rule for wall interference developed in this 
effort indicate that a measurement of the radial variation across the flow of the 
pressure or the veloclty field can be used to define the effective viscous "soft 
body", as contrasted to the "hard" geometry of the test article. One of the AIM 
methods employs this viewpoint to bypass iterative sequences in previous TVM 
schemes such as that discussed in Ref. 13 for axisymmetric bodies. 

20. In addition to the low to moderate aspect ratio approach of the previous item, 
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another AIM method exploiting the role of the Trei~z plane imaging in high 
aspect ratio transonic wing wall interference has been developed. Since the Ist 
order interference ei~ect is the modification of the incidence of the airfoil sections 
along the span, the "soft" circulation distribution can be determined from a 
solution of an integral equation, once the downwash or other suitable observable is 
measured in the wake behind the wing or on some other convenient control surface. 
The deconvolution of the integral equation can be done o~. a microcomputer with 
simple collocation or other methods. Prom the soft circulation distribution, an 
extrapolation to free field conditions can be obtained by a quadrature as shown 
in Section 4.2. 

Many of the previous items enhance our knowledge of the physics of transonic wall 
interference and can be used in its efficient p re tes t  or post-test estimation. In the next 
eection, specific recommendations are made for sharpening the ~ools to provide the win~i 
tunnel test community with quick response techniques to complement larg~--scale CFD 
approaches. 
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6. RECOMMENDATIONS 

Section 5 summarizes progress toward applying combined asymptotic and numerical 
methods to transonic wind tunnel interference prediction. Within the contractual effort 
reported herein, two computer codes were developed to handle small and large aspect 
ratio configurations in an inviscid flow context. Other theoretical developments have been 
described that provide new insights into our understanding of the physics and structure 
of interference at near sonic Mach numbers. To extend the applicablity of the methods to 
viscou~ and more realistic enviro~nents, AIM techniques were conceptualized that augment 
the theoretica~ approaches by interacting them with experimental data. 

From the observations in the previous section, it appears that it is beneficial to further 
develop the tools described. Opportunities exist for further theoretical progress as wen as 
"tuning" the methodology to actual databases. In this connection, other possibilities 
involve further experimentation that could be performed in parallel with the methods 
development. In contrast to the preponderance of tests that have been performed thus far, 
emphasis should be placed on integrating flow field measurements with surface pressure 
and force evaluations. Such a procedure would provide an excellent opportunity to validate 
the A1M concepts in this report and provide a means to develop others that cat, strengthen 
WIAC methods. 

Specific analytical items that should receive further attention are: 

1. Treatment of slightly supersonic flow. 

2. Choked and nearly choked cases for slender bodies. 

3. Incorporate the asymptotic and numerical methodologies developed herein intc 
large--scale computational procedures such as Navier-Stokes, and thin layer 
Navier-Stokes codes. Various options in this context are: 

3.1 Use combined asymptotic--numerical (CAN) methods to initialize large 
scale computational solutions to accelerate convergence to pseudo-time 
asymptotics. 

3.2 Use structure of CAN flow to reduce gridding preprocessing effort for 
large scale implementation from knowledge of solution curvature it 
affords. 

3.3 Employ "dofect" approximation to develop a corrector to first guess by 
expressing large scale solution as an increment on CAN result. Solve for 
the defect dependent variable instead of usual primitive variables. 

In addition to speeding up the large--scale simulations, these items could result 
in reduction of computational costs. 

4. Validate the two AIM methods developed under this contract against other solu- 
tions and experiment. 
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4.1 For both techniques, set up experimental programs in suitable facilities 
in which the requisite flow measurements can be made at the same time 
pressures and forces are measured. Specific recommendations for such 
tests have been made in relation to a survey of existing databases in 
Ref. ~ .  

4.2 Ctnnpare the assumed CAN vaxiations in both AIM methods with large 
scale computational simulations as another validation and proof of 
concept. 

4.3 As part of the AIM work for slender bodies, computationally implement 
the pressure specified interface theory described in this report. 

5. Extend the slender and high aspect ratio codes to handle viscous interaction 
e~ects. The motivation for this approach is to make the simulations developed 
under this contract more comparable with the test data. Integral methods such as 
Green's Lag Entrainment Technique could be used to facilitate the introduction 
of viscous effects in the CAN simulations. Viscous .phenomena can be impor- 
taut in transonic interference as shown by recent Calspan studies at AEDC. The 
effectiveness and accuracy of the Science Center's viscous interaction code has 
been demonstrated earlier in this report in comparisons with experiment for two-- 
dimensional flow over a NACA 0012 airfoil. These procedures can be extended to 
a three-dimensional context accounting for wind tunnel effects by generalizing the 
theories and codes developed in this contract to account for viscous interactions. 

6. Computationally implement and more thoroughly develop the theory generalizing 
the wing-alone high aspect ratio models to wing-bodies and kinked p]anforms. 

7. Develop adaptive wall concepts based on AIM technology. In this item, the AIM 
advantage of reducing computer overhead would be exploited in developing on- 
line closed-loop feedback systems for streamlining the walls. As discussed in 
previous sections of this report, the application of the inner expansion avoids 
the need for iterative determination of the Usoft body" in the application of the 
TVM for axisymmetric bodies. This savings could also occur for more realistically 
shaped compact fighter and missile test articles. 

8. Determine range of applicability of models by comparison with experiment. Par- 
ticular items of interest under this heading are: 

8.1 Validity of wall height scaling law from asymptotic slender body theory 
for interference w~ve drag and pressures. 

8.2 Range of applicability of Area Rule for wall interference m It would be 
of interest to determine what constraints exist on section and test article 
geometry for validity of the interference Area Rule. 

9. The asymptotic models developed in this contract should be integrated with local 
asymptotic multideck descriptions of slot and porous wall flows. 
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In addition to the foregoing~ more theoretical work is required concerning the efl~ect 
on interference of bluntness as well as lift-dominated flo~s for the sle~ader body case. For 
the high aspect ratio limit, efl~ort is required to study the influence of displacement of the 
vortex sheet on results obtained with the planar assumptions of the theory. 
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NOMENCLATURE 

A 

An 

AI 
b 
b0 

B 

B.  
B0 
C 

C 
c, 
COEF 
Co 
dCz) 
D 
Do 
DI 
F 
g 
G 
Go 
h 
H 
I ,  
lwm, 
IMAX 
Io,I1 
jnh 
JMAX 
3o,1 
k 
K 
Ko,Kx 

constant in Central Layer expression Eq. (2-31) 
reduced angle of attack - a/~ 
coefficients appearing in discretized partial differential equations of 

perturbation potential in Eq. (2-58a) 
Fourier coefficient 
reduced angle of attack of free field 
wan perturbation of similarity parameter 
wing semispan 
far field constant derived in Ref. 29 
far field constant derived iu Ref 29 
body function, and body boundary operator in Eq. (2-100 l) 

scaled span -- 611Sb - aspect ratio 
Fourier coefficient 
far fidd constant derived in Ref. 29 and defined bdore Eq. (2-47a) 
characteristic length scale, local chord 
undetermined constant in Eq. (2-18a) 
pressure coefilcient 
de~ed  in Eq. (2-5~¢) 
undetermined constants in Eqs (2-18a,b) 
function related to aspect ratio correction in Ufting line theory 
drag 
undetermined constant in Eqs. (2-18~,b) 
doublet strength in Eq. (4--llb) 
Eq. (2-1), ~o.. 
shock perturbation function 
Green's function 
shock shape perturbation function introduced before Eq. (2-43) 
dimensional wall height or radius 
scaled wall height or radius = 6h/c, 6X/Sh 
integral defined in Eq. (3-10b) 
integral defined in Eq. (3-10c) 
refers to downstream boundary of computational domain 
modified Bessel function of first kind 
zero satisfying 3, (j,k) = 0 
refers to top of computational domain 
Bessel functions of first kind 
transform variable 
transonic similarity parameter 
modified Bessel functions of third kind 
free field similarity parameter 
wall perturbation of similarity parameter 
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L 
M 

P .  
PI,2 

Q1,2 
t" 

R 
ltltS 
s(=) 

~1,2 

U0,1 
U 

~0,1 
W 

X*, b'*, Z* 
~w Vt, 2w 

X 
y,z 

Yo,* 
Z 
Z' 
Ai 

m 

.,4i 

.,4oo 

,#4Ol 
Bi 
& 
&1 

G0 

length of body, TSD operator Eq. (2-32) 
linear operator of interference flow 
surface normal 
Fourier coefllcient in Eq. (2-26a) 
Legendre polynomial 
Fourier coe~cient in Eq. (2-26a) 
functions to be determined by matching in Eqs. (2-26) 
transverse radius 
scaled transverse radius 
polar radius defined in Figs. 2 and 9 
right hand side defined in Eq. (2--57b) 
dimensionless area distribution 
dimensional area distribution 
intermediate quantities defined in Eqs. (3-21) 

horizontal and vertical velocity components 
~0,I. 
freestream velocity 

~0,1F 
interface pressure function Eq. (3-4) 
function related to wall correction in high aspec~ ratio theory 
outer variables for lifting line theory defiued in Eq. (3-6) 
dummy variables for z , y , z  
streamwise coordinate 
z / V / ~ o  , and reduced streamwise coordinate d ~ e d  after Eq. (2-48) 
scaled variables for small disturbance theory for large aspect 

ratio formulation 
scaled variables introduced in Eq. (3-9a) 
Bessel functions of second kind 
z + i y  

constants introduced in Eqs. (2-27)-(2-29) to be determined by 
matching in Fig. 5 (i -- 0,1, 2, 3, 4) 

(i - 0 - 4) constants determined by matching in Fig. 5 
constants introduced in Eqs. (2-27)-(2-29) to be determined by 

matching in Fig. 5 (i - 0,1,2,3,4) 
same as above 
sa431e as above 
s a m e  as above 
same as above 
sanle as above 

same as above 
same as above 
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~0,1 ,2  
,y 
I" 
Fo 
I'I 

A 
Ac, 
~n 

0 
~e r t  M , 

#,p 
( II) 

)ink 
# 
Pij 
Pl,2 
v1(H) 

T 

@ 

tO 
fl(1,2) 

s a m e  88 a b o v e  

angle of attack 
constants determined by matching in Eqs. (2-24) 
specific heat ratio, drculation 
circulation 
zeroth order flow circulation of high aspect ratio wing flow 
interference flow circulation 
characteristic thickness ratio of body 
Lapl~ian 
;ntederence increment of pressure coefficient 
jump sum index, where eo : 0, en : 2, n > 0 
gauge functions appearing in Eq. (2-20) 
dummy variables for z and y 
azimuthal angle in Fig. 2 
dummy variables for 8 and r 
polar coordinates based on scaled variables 
dummy variables for 8 and r 
gauKe function used in Eq. (2-6c) 
zero of secular equation Jl (A,zH) = 0 
s c a l e d  z e r o  = j,,h/~ 
t t /B  reciprocal of semispan to tunnel height ratio 
switch parameter defined in Eq. (2-57d) 
gauge functions appearing in Eq. (2-19) 
gauge functions used in Eq. (2--6b) 
dummy variables for z ,y,z 
body thickness ratio 
perturbation potential 
regularized potential 
iutermediate representation of perturbation potential in Eq. (4--10a) 
far field asymptotic for intede~mce potential in Eq. (2--44); also in Eq. (3-102b) 
interference perturbation potential 
velocity potential 
perturbation potential in wall deck, also outer representatior, of 

perturbation potential in confined lifting line theory 
polar angle shown in Fig. 2, relaxation parameter in Eqs. (2.-57) 
special functions introduced in Eqs. (28) 

Subscripts 

In various locations in the manuscript, subscripts denote dii~erentiaton. 

h homogeneous 
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p 

0,1 

O O  

particular 
denotes order of approximation 
denotes freestream quantity 

Superscripts 

U 

D 

t 
+ 

m 

immediately upstream of shock 
immediately downstream of shock 
Eq. (2--8b) 
immediately downstream of shock 
immediately upstream of shock 

Special Symbols 

× 

V 
V. 
[ 

overbar refers to dimensional quantity or Fourier transform 
vector cross product 
gradient operator 
divergence 
jump across shock introduced after Eq. (2-33) or operator dependence 
average across shock introduced before Eqs. (2-76) 
vector dot product 
cross ~low operator in Eq. (2-62) 
bar across integral refers to principal value 

213 



AEDC-TR-91-24 

A P P E N D I X  A - -  M O D E L S  F O R  I N T E R F E R E N C E  F L O W  N E A R  S H O C K S  

~" 0.2 

0.4 - i 

- - -  Expansion Wave 
Compression Wave 

0.3 

Sonl© Llne-~ .,s I ' ~  /~, 

s / \ /  \ /  

- . / \   .,,ook 

P 
0.4 0.6 ~, 0 0 . 8 ]  X* A 0 x 

X t 

SC-t38c-: 

0.1 

0 
0.2 B 

Region Near Impingement Point 

Fig. A1. Detail of shock region. 

To obtain a qualitative understanding of the spikelike nature of the interference near 
the shock of the basic flow, certainmodel problems are of interest. Figure A1 is a schematic 
of the region near the shock wave in the wall interference flow for a slender body. The 
equation for the interference perturbation potential ~1 given earlier in this report is 

1(~4,,,), = 0 (A1) ( K  - ("y -I" 1)~o.. ) ~1... .  - ('Y -I" 1)~o... .  ~1., "t" ~ 

In (A1), z" refers to an origin displaced from the virtual intersectica~ of the shock and 
z axis (body). For convenience in 'what follows, the translation 

= ~. _ ~ (A2) 

is performed where z~ refers to the virtual intersection point O. Assuming that the shock 
is normal to the body at z~, then the coefficient of the first terra in (A1) changes sign in the 
small neighborhood of O. Approximate model equations for weak shock layer transitions 
near O are 

1 
(s~C~)q,~.) ,  + ,~ (e÷ . ) ,  = o 

1 (=~,,.). + ~ (~¢,~,)~ = o 

(AS) 

(A4) 

Equations (A3) and (A4) are generalizations of the Lavrentef-Bitsatze and Tricomi equa- 
tions, respectively, for axisymmetric flow. These are, respectively 

1 ( ~ , ) ~  -- 0 sgn(~)¢~.. + (AS) 
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1 =~.. + ~ (~i,)~ = 0 (Ae) 

Expanding the Krst term in (A3) yields a ~(z)~t. term. One possible set of conditions for 
a boundary value problem modeling the flow structure near the foot of the shock is 

~z bounded as [:[ ~ oo (A7) 

Other suitable matching conditions as ~ - ,  co and 0 with z fixed are required for a properly 
posed formulation. 

A full discussion of the appropriate boundary value problem for (A3) or (A5) is not 
intended here. However, the behavior of one class of solutions of (A3) will be discussed. 

If separation of variables is used in (A3) by letting 

~ = X(=)R(~)  

then 

or 

Equation (A10) has 

(sgu(=)x') '  = i (,~m)' : _~ (AS) 
X ~ R 

sgu(z)X" + 25(z)X' + A'X - 0 (A9) 

(~R ' ) '  - ,x2~R = o (Ai0) 

R = xo(A~) (An) 

as one possible solution. Equation (A9) models the motion of a linear oscillator with 
impulsive positive damping for z > 0 and similar negative damping for z < 0. The delta 
function can be simulated by the square pulse 

1 e e 
f(=)=- , -- <=< (Al2a) 

e (A12b) = 0 ,  I=l>~ 

Exponentially damped solutions can be used to match with the ~l field governed by (A1) 
as ~ --+ oo. The logarithmic behavior of (All)  as ~ --* 0 corresponds to a special singularity 
at the root of the shock at point O. Equation (A9) has been studied for the model delta 
function (A12). The second term in (A9) leads to spikes similar to that discussed earlier 
in this report. 

Another simple plausibility argument for the spike behavior of ~bl. near O is associated 
with the assumption that 

~o.  - -  sgn(:)  as = -~  0 

If the interference perturbs ~o. to become 

~o. -- (i + 0sgu (= - ~) , 

then the dominant interference term beh~ves like 

sgu ( :  - e )  - s g u  : --- 2 e 6 ( : )  

which resembles our computed solutions. 

215 



AEDC-TR-91-24 

A P P E N D I X  B - R E E X P A N S I O N  S I N G U L A R I T Y  D E T A I L S  

Figure 97 shows an increase in the rate of reexpansion immediately downstream of 
the shock when the latter is weakened. This somewhat counterintuitive behavior can he 
understood in terms of the singularity of Transonic Small Disturbance Theory discussed in 
Ref. 30. The trends in Fig. 97 are supported by Figs. B1-B4. They represent experiments 
and other calculations. The relevance of the experiments is that if the Reynolds number 
is sumciently high, the post-shock expansion resembles that obtained from inviscid pre- 
dictions llke ours. (Smaller Reynolds numbers will result in post-shock boundary layer 
separation and are not germane to this discussion.) 

Figure B1 shows experimental data of B~ckwell on a 12 percent thick airfoil Here, a 
change in the Reynolds number gives an upstream shock displacement with an attendant 
weakening of the shock. Note the increased reexpansion tendency downstream of the 
weaker shock. Figure B2 shows so much increase in the reexpe,.-aion that a second shock 
forms. Figure B3 taken from E. Kraft's Ph.D. thesis*, further confirms that weakening 
the shock exaggerates the reexpansion C e blip. 

Gadd, Oswatitsch, Zierep, and Cole have analyzed this behavior. Inviscidiy, the reex- 
ps~sion detail represents a logarithmic singularity immediately downstream of the point 
where the shock strikes the airfoil. If z denotes the distance in the freestream direction 
measured from the shock impingement point, b subscript represents conditions immediately 
behind the shock on the airfoil, Meo - freeetream Mach number, 6 - airfoil thickness ratio, 
K - ~ ,  and u is the perturbation velocity in the z direction, then if 

= + 1),, - K, (B1) 

the local behavior of the pressure coelBcient C e immediately downstream of the impinge- 
ment point is given by 

c,  = c,,  + A=h(x) . . . ,  (B2) 

where A is the strength of the singularity given by 

A =  (BS) z.Vf=G- ~. , 

In Eq. (B3), F '(g0) is proportional to the curvature and 30 represents the z coordi- 
nate of the impingement point, measured from the nose. The quantity wb is proportional 
to the Mach number jump across the shock. W~kening the shock reduces rob, increasing 
the reexpansion singularity strength A. For a NACA-0012 airfoil as well as other pro- 
flies, the wpJ~kened shock moves upstream and the magnitude of F"(go) increases from its 

* Kraft, E.M., ~An Integral Equation Method for Boundary Interference in Perforated- 
Wall Wind Tunnels at Transonic Speeds," Ph.D. Thesis, U. of Tennessee, December, 1975. 
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downstream value. This has a compounding effect on the increase in A. Data from other 
profiles confirm this, but obviously it is an airfoil shape dependent phenomenon. 

As an additional verification of these trends, Fig. B4 indicates a comparison of the 
singularity intensity A from our Mach .75 elliptic wing case for free field and pressure 
boundary conditions (circled points). Also shown are results from Kraft's thesis (square 
points derived from Fig. B3). They correspond to a NACA-0012 airfoil 2-D flow in the 
free field as well as between solid walls for the height to chord ratios shown in Fig. B3. 
The quantity A was determined from the numerical solution by a least squares ilt of the 
solution using Eq. (B2) as the model to fit the solutions. Kraft's integral equation method 
simulates the shock as an instantaneous discontinuity, whereas the finite difference solution 
needs a few points to resolve the shock. These aspects as well as the shock fitting process 
used in the wall interference perturbation solution are factors affecting the comparison 
shown. Another is errors committed in digitizing the data near the impingement point. 
In this connection, at least four points were used for the least squares fit. Although these 
considerations lead to some minor discrepancies, there is a good correspondence between 
the numerically determined acceleration of the flow and the local asymptotic estimate. 

,_.t 
l . l  +I - - o 0 1  I,. ° I "  

.+!I 

I +J .+ • ~ • 

Fig. B1. Reynolds number effect on 
pressure distribution - -  
example of upstream shock 
displacement. 

Fig. B2. Reynolds number effect on 
pressure distribution - -  
example of change from 
single to double shock system. 
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on the pressure distribution singularity with that from numerical 
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